-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNumpyDemo.py
94 lines (86 loc) · 2 KB
/
NumpyDemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy
a = numpy.array([[1,2,3,4],[5,6,7,8]])
print(a)
print(a.size)
print(a.ndim)
print(a.shape)
print(a.dtype)
# arr=np.array([[1,2,3],[4,5,6]])
# print(arr)
# print(arr.ndim)
# print(arr.dtype)
# print(arr.shape)
# print(arr.size)
# arr=np.array([[[1,2],[3,4],[5,6]],[[7,8],[9,10],[10,11]]])
# print(arr)
# print(arr.ndim)
# print(arr.dtype)
# print(arr.shape)
# print(arr.size)
# arr=np.arange(10).reshape(2,5)
# arr=np.arange(27).reshape(3,3,3)
# arr=np.random.randn(2,3)
# arr=np.zeros((2,3))
# arr=np.ones((2,3))
# arr=np.empty((2,3))
# print(arr)
# arr=np.arange(10).reshape(2,5)
# print(arr)
# print(np.where(arr>5,arr,0))
# arr=np.random.randint(1,10,20).reshape(4,5)
# brr=np.random.randint(1,10,20).reshape(5,4)
# print(arr)
# print(brr)
# print(arr[0,0])
# print(arr[:,0])
#第一行和第四行
# print(arr[0:4:3])
# print(arr[[0,3]])
# #第一列和第四列
# print(arr[0:,0:5:4])
# print(arr[0:,[0,4]])
#第二三行,第二三列
# print(arr[[1,2]])
# print(arr[[1,2],1:3])
# print(arr[0][0])
# print(arr.shape[0])
# for i in range(0,arr.shape[0]):
# for j in range(arr.shape[1]):
# print(arr[i][j],end=" ")
# print(arr.sum())
# print((arr>5).sum())
# print(arr.sum(0))
# print(arr.sum(1))
# print(arr+brr)
# print(np.dot(arr,brr))
# print(arr.T)
# a = np.arange(10).reshape(2,5)
# print(a)
# a.resize(5,2)
# print(a)
b = np.arange(6).reshape(2,3)
c = np.ones((2,3))
# d = np.hstack((b,c))
# print(d) # hstack:horizontal stack 左右合并
# e = np.vstack((b,c))
# print(e) # vstack: vertical stack 上下合并
# f = np.column_stack((b,c))
# print(f)
# g = np.row_stack((b,c))
# print(g)
# h = np.stack((b, c), axis=1) # 按行合并
# print(h)
i = np.stack((b,c), axis=0) # 按列合并
print(i)
# j = np.concatenate ((b, c, c, b), axis=0) #多个合并
# print(j)
#
# #分割
k = np.hsplit(i, 2)
print(k)
l = np.vsplit(i, 2)
print(l)
# m = np.split(i, 2, axis=0)
# n = np.split(i, 2,axis=1)
#
# o = np.array_split(np.arange(10),3) #不等量分割