-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
155 lines (122 loc) · 5.86 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""
Date: 2021-06-11 13:54:00
LastEditors: GodK
LastEditTime: 2021-07-19 21:53:18
"""
import os
import config
import sys
import torch
import json
from transformers import BertTokenizerFast, BertModel
from models.GlobalPointer import DataMaker, MyDataset, GlobalPointer, MetricsCalculator
from torch.utils.data import DataLoader, Dataset
import numpy as np
config = config.eval_config
hyper_parameters = config["hyper_parameters"]
os.environ["TOKENIZERS_PARALLELISM"] = "true"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
config["num_workers"] = 6 if sys.platform.startswith("linux") else 0
# for reproductivity
torch.backends.cudnn.deterministic = True
tokenizer = BertTokenizerFast.from_pretrained(config["bert_path"], add_special_tokens=True, do_lower_case=False)
def load_data(data_path, data_type="predict"):
if data_type == "predict":
datas = []
with open(data_path, encoding="utf-8") as f:
for line in f:
line = json.loads(line)
datas.append(line)
return datas
else:
return json.load(open(data_path, encoding="utf-8"))
ent2id_path = os.path.join(config["data_home"], config["exp_name"], config["ent2id"])
ent2id = load_data(ent2id_path, "ent2id")
ent_type_size = len(ent2id)
def data_generator(data_type="predict"):
"""
读取数据,生成DataLoader。
"""
if data_type == "predict":
predict_data_path = os.path.join(config["data_home"], config["exp_name"], config["predict_data"])
predict_data = load_data(predict_data_path, "predict")
all_data = predict_data
# TODO:句子截取
max_tok_num = 0
for sample in all_data:
tokens = tokenizer.tokenize(sample["text"])
max_tok_num = max(max_tok_num, len(tokens))
assert max_tok_num <= hyper_parameters[
"max_seq_len"], f'数据文本最大token数量{max_tok_num}超过预设{hyper_parameters["max_seq_len"]}'
max_seq_len = min(max_tok_num, hyper_parameters["max_seq_len"])
data_maker = DataMaker(tokenizer)
if data_type == "predict":
predict_dataloader = DataLoader(MyDataset(predict_data),
batch_size=hyper_parameters["batch_size"],
shuffle=False,
num_workers=config["num_workers"],
drop_last=False,
collate_fn=lambda x: data_maker.generate_batch(x, max_seq_len, ent2id,
data_type="predict")
)
return predict_dataloader
def decode_ent(text, pred_matrix, tokenizer, threshold=0):
# print(text)
token2char_span_mapping = tokenizer(text, return_offsets_mapping=True)["offset_mapping"]
id2ent = {id: ent for ent, id in ent2id.items()}
pred_matrix = pred_matrix.cpu().numpy()
ent_list = {}
for ent_type_id, token_start_index, token_end_index in zip(*np.where(pred_matrix > threshold)):
ent_type = id2ent[ent_type_id]
ent_char_span = [token2char_span_mapping[token_start_index][0], token2char_span_mapping[token_end_index][1]]
ent_text = text[ent_char_span[0]:ent_char_span[1]]
ent_type_dict = ent_list.get(ent_type, {})
ent_text_list = ent_type_dict.get(ent_text, [])
ent_text_list.append(ent_char_span)
ent_type_dict.update({ent_text: ent_text_list})
ent_list.update({ent_type: ent_type_dict})
# print(ent_list)
return ent_list
def predict(dataloader, model):
predict_res = []
model.eval()
for batch_data in dataloader:
batch_samples, batch_input_ids, batch_attention_mask, batch_token_type_ids, _ = batch_data
batch_input_ids, batch_attention_mask, batch_token_type_ids = (batch_input_ids.to(device),
batch_attention_mask.to(device),
batch_token_type_ids.to(device),
)
with torch.no_grad():
batch_logits = model(batch_input_ids, batch_attention_mask, batch_token_type_ids)
for ind in range(len(batch_samples)):
gold_sample = batch_samples[ind]
text = gold_sample["text"]
text_id = gold_sample["id"]
pred_matrix = batch_logits[ind]
labels = decode_ent(text, pred_matrix, tokenizer)
predict_res.append({"id": text_id, "text": text, "label": labels})
return predict_res
def load_model():
model_state_dir = config["model_state_dir"]
model_state_list = sorted(filter(lambda x: "model_state" in x, os.listdir(model_state_dir)),
key=lambda x: int(x.split(".")[0].split("_")[-1]))
last_k_model = config["last_k_model"]
model_state_path = os.path.join(model_state_dir, model_state_list[-last_k_model])
encoder = BertModel.from_pretrained(config["bert_path"])
model = GlobalPointer(encoder, ent_type_size, 64)
model.load_state_dict(torch.load(model_state_path))
model = model.to(device)
return model
def evaluate():
predict_dataloader = data_generator(data_type="predict")
model = load_model()
predict_res = predict(predict_dataloader, model)
if not os.path.exists(os.path.join(config["save_res_dir"], config["exp_name"])):
os.mkdir(os.path.join(config["save_res_dir"], config["exp_name"]))
save_path = os.path.join(config["save_res_dir"], config["exp_name"], "predict_result.json")
# json.dump(predict_res, open(save_path, "w", encoding="utf-8"), ensure_ascii=False)
with open(save_path, "w", encoding="utf-8") as f:
for item in predict_res:
f.write(json.dumps(item, ensure_ascii=False) + "\n")
if __name__ == '__main__':
evaluate()