-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdist_lm_runner.py
236 lines (214 loc) · 10.5 KB
/
dist_lm_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import time
import random
import numpy as np
import torch
import torch.autograd.profiler as profiler
from tasks.data_loaders.wikitext import get_wikitext_train_data_loader, get_wikitext_test_data_loader
from tasks.data_loaders.arxiv21 import get_arxiv21_train_data_loader, get_arxiv21_test_data_loader
from modules.gpt_modules import GPTConfig
from modules.tokenizer import build_tokenizer
from pipeline_parallel.dist_gpipe_pipeline_async import GpipeAsync
from pipeline_parallel.dist_pp_utils import get_pp_module
# import wandb
from utils.dist_args_utils import *
from utils.dist_train_utils import *
from utils.dist_test_utils import *
from comm.comm_utils import *
import compress.flag
def train_loop(args, pipe, device, train_data_loader, test_data_loader):
for e in range(args.n_epochs):
if e < args.warmup_epochs:
compress.flag.FLAG_DISABLE_COMPRESSION = True
else:
compress.flag.FLAG_DISABLE_COMPRESSION = False
distributed_train_lm_iter(args, pipe, device, train_data_loader)
if test_data_loader is not None and args.do_evaluation:
distributed_test_lm_iter(args, pipe, device, test_data_loader)
# if get_pipeline_parallel_rank() == args.pipeline_group_size - 1:
# wandb.log({'epoch': e}, step=pipe.global_step)
def main():
parser = argparse.ArgumentParser(description='Gpipe-GPT3')
add_device_arguments(parser)
add_torch_distributed_arguments(parser)
add_model_arguments(parser)
add_task_arguments(parser)
add_training_hyper_parameter_arguments(parser)
add_mixed_precision_arguments(parser)
add_parallel_schema_arguments(parser)
add_acitvation_compression_arguments(parser)
parser.add_argument('--model-name', type=str, default='gpt2', metavar='S',
help='model name or path')
parser.add_argument('--tokenizer-name', type=str, default='gpt2', metavar='S',
help='tokenizer name or path')
parser.add_argument('--task-name', type=str, default='wikitext', metavar='S',
help='task name')
parser.add_argument('--task-type', type=str, default='language_model', metavar='S',
help='task typw')
parser.add_argument('--n-epochs', type=int, default=10, help='-')
parser.add_argument('--warmup-epochs', type=int, default=1, help='-')
parser.add_argument('--warmup-steps', type=int, default=None, help='-')
parser.add_argument('--load-pretrained-model',
type=lambda x: x.lower()=='true', default=True, metavar='S',
help='load pretrained model or not.')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--profiling', type=str, default='tidy_profiling', metavar='S',
help='enable which profiling? default: tidy mode')
parser.add_argument('--trace-postfix', type=str, default='default', metavar='S',
help='postfix of the tracing file name.')
parser.add_argument('--do-evaluation',
type=lambda x: x.lower()=='true', default=True, metavar='S',
help='do evaluation or not.')
args = parser.parse_args()
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
if args.use_cuda:
assert (torch.cuda.is_available())
device = torch.device('cuda', args.cuda_id)
else:
device = torch.device('cpu')
init_communicators(args)
config = GPTConfig.from_pretrained(args.model_name)
if get_pipeline_parallel_rank() == args.pipeline_group_size-1:
args.num_layers -= 3
config.n_layer = args.num_layers # num_layers per node
elif get_pipeline_parallel_rank() == args.pipeline_group_size-4:
args.num_layers += 1
config.n_layer = args.num_layers # num_layers per node
elif get_pipeline_parallel_rank() == args.pipeline_group_size-3:
args.num_layers += 1
config.n_layer = args.num_layers # num_layers per node
elif get_pipeline_parallel_rank() == args.pipeline_group_size-2:
args.num_layers += 1
config.n_layer = args.num_layers # num_layers per node
else:
config.n_layer = args.num_layers # num_layers per node
tokenizer = build_tokenizer(args)
tokenizer.model_max_length = args.seq_length
config.vocab_size = tokenizer.vocab_size
config.bos_token_id = tokenizer.bos_token_id
config.eos_token_id = tokenizer.eos_token_id
config.pad_token_id = tokenizer.pad_token_id
print("token vocab size:", tokenizer.vocab_size)
if args.task_name == 'wikitext':
train_data_loader = get_wikitext_train_data_loader(args, tokenizer)
test_data_loader = get_wikitext_test_data_loader(args, tokenizer)
elif args.task_name == 'arxiv21':
train_data_loader = get_arxiv21_train_data_loader(args, tokenizer)
test_data_loader = get_arxiv21_test_data_loader(args, tokenizer)
else:
raise Exception('unknown task.')
if args.warmup_steps is None:
args.warmup_steps = len(train_data_loader)
args.total_steps = len(train_data_loader) * args.n_epochs
use_dp = (args.world_size != args.pipeline_group_size)
if use_dp:
print("Running ", args.pp_mode, " with data parallel.")
else:
print("Running ", args.pp_mode, " without data parallel.")
# torch.manual_seed(args.seed)
# random.seed(args.seed)
# np.random.seed(args.seed)
pipe = get_pp_module(args, config, device, use_dp)
if args.load_pretrained_model:
if get_pipeline_parallel_rank() == 0:
pipe.model.model[0].load_state_dict(
torch.load(f'{args.model_name}/pytorch_embs.pt')
)
for i in range(len(pipe.model.model)-1):
print(i)
pipe.model.model[i+1].load_state_dict(
torch.load(f'{args.model_name}/pytorch_{i}.pt')
)
elif get_pipeline_parallel_rank() == args.pipeline_group_size-1:
_i = get_pipeline_parallel_rank() * (args.num_layers+3) + 3
# skip last classification layer
for i in range(len(pipe.model.model)-1):
print(_i + i)
pipe.model.model[i].load_state_dict(
torch.load(f'{args.model_name}/pytorch_{_i + i}.pt')
)
pipe.model.model[-1].load_state_dict(
torch.load(f'{args.model_name}/pytorch_lm_head.pt')
)
elif get_pipeline_parallel_rank() == args.pipeline_group_size-2:
_i = get_pipeline_parallel_rank() * (args.num_layers-1) + 2
for i in range(len(pipe.model.model)):
print(_i + i)
pipe.model.model[i].load_state_dict(
torch.load(f'{args.model_name}/pytorch_{_i + i}.pt')
)
elif get_pipeline_parallel_rank() == args.pipeline_group_size-3:
_i = get_pipeline_parallel_rank() * (args.num_layers-1) + 1
for i in range(len(pipe.model.model)):
print(_i + i)
pipe.model.model[i].load_state_dict(
torch.load(f'{args.model_name}/pytorch_{_i + i}.pt')
)
elif get_pipeline_parallel_rank() == args.pipeline_group_size-4:
_i = get_pipeline_parallel_rank() * (args.num_layers-1)
for i in range(len(pipe.model.model)):
print(_i + i)
pipe.model.model[i].load_state_dict(
torch.load(f'{args.model_name}/pytorch_{_i + i}.pt')
)
else:
_i = get_pipeline_parallel_rank() * args.num_layers
for i in range(len(pipe.model.model)):
print(_i + i)
pipe.model.model[i].load_state_dict(
torch.load(f'{args.model_name}/pytorch_{_i + i}.pt')
)
# if args.load_pretrained_model:
# if get_pipeline_parallel_rank() == 0:
# pipe.model.model[0].load_state_dict(
# torch.load(f'{args.model_name}/pytorch_embs.pt')
# )
# for i in range(len(pipe.model.model)-1):
# pipe.model.model[i+1].load_state_dict(
# torch.load(f'{args.model_name}/pytorch_{i}.pt')
# )
# elif get_pipeline_parallel_rank() == args.pipeline_group_size-1:
# _i = get_pipeline_parallel_rank() * args.num_layers
# # skip last classification layer
# for i in range(len(pipe.model.model)-1):
# pipe.model.model[i].load_state_dict(
# torch.load(f'{args.model_name}/pytorch_{_i + i}.pt')
# )
# pipe.model.model[-1].load_state_dict(
# torch.load(f'{args.model_name}/pytorch_lm_head.pt')
# )
# else:
# _i = get_pipeline_parallel_rank() * args.num_layers
# for i in range(len(pipe.model.model)):
# pipe.model.model[i].load_state_dict(
# torch.load(f'{args.model_name}/pytorch_{_i + i}.pt')
# )
if args.profiling == 'no-profiling':
train_loop(args, pipe, device, train_data_loader, test_data_loader)
else:
prefix = './trace_json/gpt3_' + args.pp_mode
if use_dp:
prefix = prefix + '_' + args.dp_mode
trace_file = prefix + get_learning_arguments_str(args) + get_model_arguments_str(args) + \
get_dist_arguments_str(args) + get_mixed_precision_arguments_str(args) + '_' + \
args.profiling + '_' + args.trace_postfix + '.json'
if args.profiling == 'tidy_profiling':
try:
train_loop(args, pipe, device, train_data_loader, test_data_loader)
except Exception as e:
print(get_pipeline_parallel_rank(), e)
pipe.export_profiling_result(filename=trace_file)
elif args.profiling == 'pytorch_profiling':
with profiler.profile(profile_memory=True, use_cuda=args.use_cuda) as prof:
train_loop(args, pipe, device, train_data_loader, test_data_loader)
print(prof.key_averages().table())
prof.export_chrome_trace(trace_file)
else:
print("No recognized profiler?")
assert False
print(get_pipeline_parallel_rank(), 'finished.')
if __name__ == '__main__':
main()