-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsum_script.py
53 lines (43 loc) · 1.58 KB
/
sum_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import sys
import json
import spacy
nlp = spacy.load('en_core_web_lg')
from spacy.lang.en.stop_words import STOP_WORDS
from string import punctuation
from heapq import nlargest
# retreiving the passed data from node js
raw_docx = sys.argv[1]
raw_text = raw_docx
docx = nlp(raw_text)
# listing out the stop words using spacy library
stopwords = list(STOP_WORDS)
# check the word frequency and tokenise these words
word_frequencies = {}
for word in docx:
if word.text not in stopwords:
if word.text not in word_frequencies.keys():
word_frequencies[word.text] = 1
else:
word_frequencies[word.text] += 1
maximum_frequncy = max(word_frequencies.values())
for word in word_frequencies.keys():
word_frequencies[word] = (word_frequencies[word]/maximum_frequncy)
# sentence tokens
sentence_list = [ sentence for sentence in docx.sents ]
# calculate sentence scores
sentence_scores = {}
for sent in sentence_list:
for word in sent:
if word.text.lower() in word_frequencies.keys():
if len(sent.text.split(' ')) < 30:
if sent not in sentence_scores.keys():
sentence_scores[sent] = word_frequencies[word.text.lower()]
else:
sentence_scores[sent] += word_frequencies[word.text.lower()]
# find N Largest and join the sentences
summarized_sentences = nlargest(7, sentence_scores, key=sentence_scores.get)
final_sentences = [ w.text for w in summarized_sentences ]
summary = ' '.join(final_sentences)
# pass summary to node js
print(summary)
sys.stdout.flush()