-
Notifications
You must be signed in to change notification settings - Fork 69
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
12 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,11 +1,10 @@ | ||
# [EvTexture (ICML 2024)](https://icml.cc/virtual/2024/poster/34032) | ||
Official Pytorch implementation for the "EvTexture: Event-driven Texture Enhancement for Video Super-Resolution" paper (ICML 2024). | ||
|
||
<p align="left"> | ||
📃 <a href="https://drive.google.com/file/d/1RWptb35a-z-hwc3gZZY-FPd_G8g8Up1d/view?usp=sharing" target="_blank">[Paper]</a> | ||
<p align="center"> | ||
🌐 <a href="https://dachunkai.github.io/evtexture.github.io/" target="_blank">Project</a> | 📃 <a href="https://drive.google.com/file/d/1RWptb35a-z-hwc3gZZY-FPd_G8g8Up1d/view?usp=sharing" target="_blank">Paper</a> | 🖼️ <a href="https://docs.google.com/presentation/d/1nbDb39TFb374DzBwdz5v20kIREUA0nBH/edit?usp=sharing" target="_blank">Poster</a> <br> | ||
</p> | ||
|
||
This is the official Pytorch implementation of "EvTexture: Event-driven Texture Enhancement for Video Super-Resolution" paper (ICML 2024). This repository contains *video demos* and *codes* of our work. | ||
|
||
**Authors**: [Dachun Kai](https://github.com/DachunKai/)<sup>[:email:️](mailto:[email protected])</sup>, Jiayao Lu, [Yueyi Zhang](https://scholar.google.com.hk/citations?user=LatWlFAAAAAJ&hl=zh-CN&oi=ao)<sup>[:email:️](mailto:[email protected])</sup>, [Xiaoyan Sun](https://scholar.google.com/citations?user=VRG3dw4AAAAJ&hl=zh-CN), *University of Science and Technology of China* | ||
|
||
**Feel free to ask questions. If our work helps, please don't hesitate to give us a :star:!** | ||
|
@@ -49,22 +48,18 @@ https://github.com/DachunKai/EvTexture/assets/66354783/01880c40-147b-4c02-8789-c | |
pip install torch-1.10.2+cu111-cp37-cp37m-linux_x86_64.whl | ||
pip install torchvision-0.11.3+cu111-cp37-cp37m-linux_x86_64.whl | ||
git clone https://github.com/DachunKai/EvTexture.git | ||
cd /path/to/EvTexture | ||
pip install -r requirements.txt | ||
python setup.py develop | ||
cd EvTexture && pip install -r requirements.txt && python setup.py develop | ||
``` | ||
* Run in Docker :clap: | ||
|
||
Note: before running the Docker image, make sure to install nvidia-docker by following the [official intructions](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html). | ||
|
||
[Option 1] Directly pull the published Docker image we have provided from [Dockerhub](https://hub.docker.com/)/[Alibaba Cloud](https://cr.console.aliyun.com/cn-hangzhou/instances). | ||
[Option 1] Directly pull the published Docker image we have provided from [Alibaba Cloud](https://cr.console.aliyun.com/cn-hangzhou/instances). | ||
```bash | ||
docker pull dachunkai/evtexture:latest # From Dockerhub | ||
# or | ||
docker pull registry.cn-hangzhou.aliyuncs.com/dachunkai/evtexture:latest # From Alibaba Cloud | ||
docker pull registry.cn-hangzhou.aliyuncs.com/dachunkai/evtexture:latest | ||
``` | ||
|
||
[Option 2] We also provide a [Dockerfile](docker/Dockerfile) that you can use to build the image yourself. | ||
[Option 2] We also provide a [Dockerfile](https://github.com/DachunKai/EvTexture/blob/main/docker/Dockerfile) that you can use to build the image yourself. | ||
```bash | ||
cd EvTexture && docker build -t evtexture ./docker | ||
``` | ||
|
@@ -73,28 +68,25 @@ https://github.com/DachunKai/EvTexture/assets/66354783/01880c40-147b-4c02-8789-c | |
source activate evtexture && cd EvTexture && python setup.py develop | ||
``` | ||
### Test | ||
1. Download the pretrained models to `experiments/pretrained_models/EvTexture/`. ([Onedrive](https://1drv.ms/f/c/2d90e71fb9eb254f/EnMm8c2mP_FPv6lwt1jy01YB6bQhoPQ25vtzAhycYisERw?e=DiI2Ab)/[Google Drive](https://drive.google.com/drive/folders/1oqOAZbroYW-yfyzIbLYPMJ2ZQmaaCXKy?usp=sharing)/[Baidu Cloud](https://pan.baidu.com/s/161bfWZGVH1UBCCka93ImqQ?pwd=n8hg)(n8hg)). The network architecture code is in [evtexture_arch.py](https://github.com/DachunKai/EvTexture/blob/main/basicsr/archs/evtexture_arch.py). | ||
1. Download the pretrained models from ([Onedrive](https://1drv.ms/f/c/2d90e71fb9eb254f/EnMm8c2mP_FPv6lwt1jy01YB6bQhoPQ25vtzAhycYisERw?e=DiI2Ab) / [Google Drive](https://drive.google.com/drive/folders/1oqOAZbroYW-yfyzIbLYPMJ2ZQmaaCXKy?usp=sharing) / [Baidu Cloud](https://pan.baidu.com/s/161bfWZGVH1UBCCka93ImqQ?pwd=n8hg)(n8hg)) and place them to `experiments/pretrained_models/EvTexture/`. The network architecture code is in [evtexture_arch.py](https://github.com/DachunKai/EvTexture/blob/main/basicsr/archs/evtexture_arch.py). | ||
* *EvTexture_REDS_BIx4.pth*: trained on REDS dataset with BI degradation for $4\times$ SR scale. | ||
* *EvTexture_Vimeo90K_BIx4.pth*: trained on Vimeo-90K dataset with BI degradation for $4\times$ SR scale. | ||
|
||
2. Download the preprocessed test sets (including events) for REDS4 and Vid4 to `datasets/`. ([Onedrive](https://1drv.ms/f/c/2d90e71fb9eb254f/EnMm8c2mP_FPv6lwt1jy01YB6bQhoPQ25vtzAhycYisERw?e=DiI2Ab)/[Google Drive](https://drive.google.com/drive/folders/1oqOAZbroYW-yfyzIbLYPMJ2ZQmaaCXKy?usp=sharing)/[Baidu Cloud](https://pan.baidu.com/s/161bfWZGVH1UBCCka93ImqQ?pwd=n8hg)(n8hg)) | ||
2. Download the preprocessed test sets (including events) for REDS4 and Vid4 from ([Onedrive](https://1drv.ms/f/c/2d90e71fb9eb254f/EnMm8c2mP_FPv6lwt1jy01YB6bQhoPQ25vtzAhycYisERw?e=DiI2Ab) / [Google Drive](https://drive.google.com/drive/folders/1oqOAZbroYW-yfyzIbLYPMJ2ZQmaaCXKy?usp=sharing) / [Baidu Cloud](https://pan.baidu.com/s/161bfWZGVH1UBCCka93ImqQ?pwd=n8hg)(n8hg)), and place them to `datasets/`. | ||
* *Vid4_h5*: HDF5 files containing preprocessed test datasets for Vid4. | ||
|
||
* *REDS4_h5*: HDF5 files containing preprocessed test datasets for REDS4. | ||
|
||
3. Run the following command: | ||
* Test on Vid4 for 4x VSR: | ||
```bash | ||
./scripts/dist_test.sh 1 options/test/EvTexture/test_EvTexture_Vid4_BIx4.yml | ||
./scripts/dist_test.sh [num_gpus] options/test/EvTexture/test_EvTexture_Vid4_BIx4.yml | ||
``` | ||
* Test on REDS4 for 4x VSR: | ||
```bash | ||
./scripts/dist_test.sh 1 options/test/EvTexture/test_EvTexture_REDS4_BIx4.yml | ||
./scripts/dist_test.sh [num_gpus] options/test/EvTexture/test_EvTexture_REDS4_BIx4.yml | ||
``` | ||
This will generate the inference results in `results/`. | ||
|
||
4. The output results on REDS4 and Vid4 can be downloaded from ([Onedrive](https://1drv.ms/f/c/2d90e71fb9eb254f/EnMm8c2mP_FPv6lwt1jy01YB6bQhoPQ25vtzAhycYisERw?e=DiI2Ab)/[Google Drive](https://drive.google.com/drive/folders/1oqOAZbroYW-yfyzIbLYPMJ2ZQmaaCXKy?usp=sharing)/[Baidu Cloud](https://pan.baidu.com/s/161bfWZGVH1UBCCka93ImqQ?pwd=n8hg)(n8hg)). Each inference frame is named `f"{frame_index:06d}_{PSNR:.4f}_EvTexture_{dataset}_BIx4.png"`. | ||
|
||
This will generate the inference results in `results/`. The output results on REDS4 and Vid4 can be downloaded from ([Onedrive](https://1drv.ms/f/c/2d90e71fb9eb254f/EnMm8c2mP_FPv6lwt1jy01YB6bQhoPQ25vtzAhycYisERw?e=DiI2Ab) / [Google Drive](https://drive.google.com/drive/folders/1oqOAZbroYW-yfyzIbLYPMJ2ZQmaaCXKy?usp=sharing) / [Baidu Cloud](https://pan.baidu.com/s/161bfWZGVH1UBCCka93ImqQ?pwd=n8hg)(n8hg)). | ||
|
||
|
||
## :blush: Citation | ||
|