-
Notifications
You must be signed in to change notification settings - Fork 13
/
test.py
160 lines (130 loc) · 5.63 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import sys
import json
import datetime
import logging
import os.path as osp
from typing import Union
import numpy as np
from tqdm.auto import tqdm
from omegaconf import OmegaConf
import torch
from torch.utils.data import DataLoader
from mld.config import parse_args
from mld.data.get_data import get_dataset
from mld.models.modeltype.mld import MLD
from mld.models.modeltype.vae import VAE
from mld.utils.utils import print_table, set_seed, move_batch_to_device
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def get_metric_statistics(values: np.ndarray, replication_times: int) -> tuple:
mean = np.mean(values, axis=0)
std = np.std(values, axis=0)
conf_interval = 1.96 * std / np.sqrt(replication_times)
return mean, conf_interval
@torch.no_grad()
def test_one_epoch(model: Union[VAE, MLD], dataloader: DataLoader, device: torch.device) -> dict:
for batch in tqdm(dataloader):
batch = move_batch_to_device(batch, device)
model.test_step(batch)
metrics = model.allsplit_epoch_end()
return metrics
def main():
cfg = parse_args()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
set_seed(cfg.SEED_VALUE)
name_time_str = osp.join(cfg.NAME, datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
cfg.output_dir = osp.join(cfg.TEST_FOLDER, name_time_str)
os.makedirs(cfg.output_dir, exist_ok=False)
steam_handler = logging.StreamHandler(sys.stdout)
file_handler = logging.FileHandler(osp.join(cfg.output_dir, 'output.log'))
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[steam_handler, file_handler])
logger = logging.getLogger(__name__)
OmegaConf.save(cfg, osp.join(cfg.output_dir, 'config.yaml'))
state_dict = torch.load(cfg.TEST.CHECKPOINTS, map_location="cpu")["state_dict"]
logger.info("Loading checkpoints from {}".format(cfg.TEST.CHECKPOINTS))
# Step 1: Check if the checkpoint is VAE-based.
is_vae = False
vae_key = 'vae.skel_embedding.weight'
if vae_key in state_dict:
is_vae = True
logger.info(f'Is VAE: {is_vae}')
# Step 2: Check if the checkpoint is MLD-based.
is_mld = False
mld_key = 'denoiser.time_embedding.linear_1.weight'
if mld_key in state_dict:
is_mld = True
logger.info(f'Is MLD: {is_mld}')
# Step 3: Check if the checkpoint is LCM-based.
is_lcm = False
lcm_key = 'denoiser.time_embedding.cond_proj.weight' # unique key for CFG
if lcm_key in state_dict:
is_lcm = True
time_cond_proj_dim = state_dict[lcm_key].shape[1]
cfg.model.denoiser.params.time_cond_proj_dim = time_cond_proj_dim
logger.info(f'Is LCM: {is_lcm}')
# Step 4: Check if the checkpoint is Controlnet-based.
cn_key = "controlnet.controlnet_cond_embedding.0.weight"
is_controlnet = True if cn_key in state_dict else False
cfg.model.is_controlnet = is_controlnet
logger.info(f'Is Controlnet: {is_controlnet}')
if is_mld or is_lcm or is_controlnet:
target_model_class = MLD
else:
target_model_class = VAE
if cfg.optimize:
assert cfg.model.get('noise_optimizer') is not None
cfg.model.noise_optimizer.params.optimize = True
logger.info('Optimization enabled. Set the batch size to 1.')
logger.info(f'Original batch size: {cfg.TEST.BATCH_SIZE}')
cfg.TEST.BATCH_SIZE = 1
dataset = get_dataset(cfg)
test_dataloader = dataset.test_dataloader()
model = target_model_class(cfg, dataset)
model.to(device)
model.eval()
model.requires_grad_(False)
logger.info(model.load_state_dict(state_dict))
all_metrics = {}
replication_times = cfg.TEST.REPLICATION_TIMES
max_num_samples = cfg.TEST.get('MAX_NUM_SAMPLES')
name_list = test_dataloader.dataset.name_list
# calculate metrics
for i in range(replication_times):
if max_num_samples is not None:
chosen_list = np.random.choice(name_list, max_num_samples, replace=False)
test_dataloader.dataset.name_list = chosen_list
metrics_type = ", ".join(cfg.METRIC.TYPE)
logger.info(f"Evaluating {metrics_type} - Replication {i}")
metrics = test_one_epoch(model, test_dataloader, device)
if "TM2TMetrics" in metrics_type and cfg.TEST.DO_MM_TEST:
# mm metrics
logger.info(f"Evaluating MultiModality - Replication {i}")
dataset.mm_mode(True)
test_mm_dataloader = dataset.test_dataloader()
mm_metrics = test_one_epoch(model, test_mm_dataloader, device)
metrics.update(mm_metrics)
dataset.mm_mode(False)
print_table(f"Metrics@Replication-{i}", metrics)
logger.info(metrics)
for key, item in metrics.items():
if key not in all_metrics:
all_metrics[key] = [item]
else:
all_metrics[key] += [item]
all_metrics_new = dict()
for key, item in all_metrics.items():
mean, conf_interval = get_metric_statistics(np.array(item), replication_times)
all_metrics_new[key + "/mean"] = mean
all_metrics_new[key + "/conf_interval"] = conf_interval
print_table(f"Mean Metrics", all_metrics_new)
all_metrics_new.update(all_metrics)
# save metrics to file
metric_file = osp.join(cfg.output_dir, f"metrics.json")
with open(metric_file, "w", encoding="utf-8") as f:
json.dump(all_metrics_new, f, indent=4)
logger.info(f"Testing done, the metrics are saved to {str(metric_file)}")
if __name__ == "__main__":
main()