-
Notifications
You must be signed in to change notification settings - Fork 13
/
train_mld.py
232 lines (192 loc) · 9.68 KB
/
train_mld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import sys
import logging
import datetime
import os.path as osp
from tqdm.auto import tqdm
from omegaconf import OmegaConf
import torch
import swanlab
import diffusers
import transformers
from torch.utils.tensorboard import SummaryWriter
from diffusers.optimization import get_scheduler
from mld.config import parse_args
from mld.data.get_data import get_dataset
from mld.models.modeltype.mld import MLD
from mld.utils.utils import print_table, set_seed, move_batch_to_device
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def main():
cfg = parse_args()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
set_seed(cfg.SEED_VALUE)
name_time_str = osp.join(cfg.NAME, datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
cfg.output_dir = osp.join(cfg.FOLDER, name_time_str)
os.makedirs(cfg.output_dir, exist_ok=False)
os.makedirs(f"{cfg.output_dir}/checkpoints", exist_ok=False)
if cfg.TRAIN.model_ema:
os.makedirs(f"{cfg.output_dir}/checkpoints_ema", exist_ok=False)
if cfg.vis == "tb":
writer = SummaryWriter(cfg.output_dir)
elif cfg.vis == "swanlab":
writer = swanlab.init(project="MotionLCM",
experiment_name=os.path.normpath(cfg.output_dir).replace(os.path.sep, "-"),
suffix=None, config=dict(**cfg), logdir=cfg.output_dir)
else:
raise ValueError(f"Invalid vis method: {cfg.vis}")
stream_handler = logging.StreamHandler(sys.stdout)
file_handler = logging.FileHandler(osp.join(cfg.output_dir, 'output.log'))
handlers = [file_handler, stream_handler]
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=handlers)
logger = logging.getLogger(__name__)
OmegaConf.save(cfg, osp.join(cfg.output_dir, 'config.yaml'))
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
dataset = get_dataset(cfg)
train_dataloader = dataset.train_dataloader()
val_dataloader = dataset.val_dataloader()
model = MLD(cfg, dataset)
assert cfg.TRAIN.PRETRAINED, "cfg.TRAIN.PRETRAINED must not be None."
logger.info(f"Loading pre-trained model: {cfg.TRAIN.PRETRAINED}")
state_dict = torch.load(cfg.TRAIN.PRETRAINED, map_location="cpu")["state_dict"]
logger.info(model.load_state_dict(state_dict, strict=False))
model.vae.requires_grad_(False)
model.text_encoder.requires_grad_(False)
model.vae.eval()
model.text_encoder.eval()
model.to(device)
logger.info("learning_rate: {}".format(cfg.TRAIN.learning_rate))
optimizer = torch.optim.AdamW(
model.denoiser.parameters(),
lr=cfg.TRAIN.learning_rate,
betas=(cfg.TRAIN.adam_beta1, cfg.TRAIN.adam_beta2),
weight_decay=cfg.TRAIN.adam_weight_decay,
eps=cfg.TRAIN.adam_epsilon)
if cfg.TRAIN.max_train_steps == -1:
assert cfg.TRAIN.max_train_epochs != -1
cfg.TRAIN.max_train_steps = cfg.TRAIN.max_train_epochs * len(train_dataloader)
if cfg.TRAIN.checkpointing_steps == -1:
assert cfg.TRAIN.checkpointing_epochs != -1
cfg.TRAIN.checkpointing_steps = cfg.TRAIN.checkpointing_epochs * len(train_dataloader)
if cfg.TRAIN.validation_steps == -1:
assert cfg.TRAIN.validation_epochs != -1
cfg.TRAIN.validation_steps = cfg.TRAIN.validation_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
cfg.TRAIN.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.TRAIN.lr_warmup_steps,
num_training_steps=cfg.TRAIN.max_train_steps)
# EMA
model_ema = None
if cfg.TRAIN.model_ema:
alpha = 1.0 - cfg.TRAIN.model_ema_decay
logger.info(f'EMA alpha: {alpha}')
model_ema = torch.optim.swa_utils.AveragedModel(model, device, lambda p0, p1, _: (1 - alpha) * p0 + alpha * p1)
# Train!
logger.info("***** Running training *****")
logging.info(f" Num examples = {len(train_dataloader.dataset)}")
logging.info(f" Num Epochs = {cfg.TRAIN.max_train_epochs}")
logging.info(f" Instantaneous batch size per device = {cfg.TRAIN.BATCH_SIZE}")
logging.info(f" Total optimization steps = {cfg.TRAIN.max_train_steps}")
global_step = 0
@torch.no_grad()
def validation(target_model: MLD, ema: bool = False) -> tuple:
target_model.denoiser.eval()
val_loss_list = []
for val_batch in tqdm(val_dataloader):
val_batch = move_batch_to_device(val_batch, device)
val_loss_dict = target_model.allsplit_step(split='val', batch=val_batch)
val_loss_list.append(val_loss_dict)
metrics = target_model.allsplit_epoch_end()
metrics[f"Val/loss"] = sum([d['loss'] for d in val_loss_list]).item() / len(val_dataloader)
metrics[f"Val/diff_loss"] = sum([d['diff_loss'] for d in val_loss_list]).item() / len(val_dataloader)
metrics[f"Val/router_loss"] = sum([d['router_loss'] for d in val_loss_list]).item() / len(val_dataloader)
max_val_rp1 = metrics['Metrics/R_precision_top_1']
min_val_fid = metrics['Metrics/FID']
print_table(f'Validation@Step-{global_step}', metrics)
for mk, mv in metrics.items():
mk = mk + '_EMA' if ema else mk
if cfg.vis == "tb":
writer.add_scalar(mk, mv, global_step=global_step)
elif cfg.vis == "swanlab":
writer.log({mk: mv}, step=global_step)
target_model.denoiser.train()
return max_val_rp1, min_val_fid
max_rp1, min_fid = validation(model)
if cfg.TRAIN.model_ema:
validation(model_ema.module, ema=True)
progress_bar = tqdm(range(0, cfg.TRAIN.max_train_steps), desc="Steps")
while True:
for step, batch in enumerate(train_dataloader):
batch = move_batch_to_device(batch, device)
loss_dict = model.allsplit_step('train', batch)
diff_loss = loss_dict['diff_loss']
router_loss = loss_dict['router_loss']
loss = loss_dict['loss']
loss.backward()
torch.nn.utils.clip_grad_norm_(model.denoiser.parameters(), cfg.TRAIN.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
progress_bar.update(1)
global_step += 1
if cfg.TRAIN.model_ema and global_step % cfg.TRAIN.model_ema_steps == 0:
model_ema.update_parameters(model)
if global_step % cfg.TRAIN.checkpointing_steps == 0:
save_path = os.path.join(cfg.output_dir, 'checkpoints', f"checkpoint-{global_step}.ckpt")
ckpt = dict(state_dict=model.state_dict())
model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved state to {save_path}")
if cfg.TRAIN.model_ema:
save_path = os.path.join(cfg.output_dir, 'checkpoints_ema', f"checkpoint-{global_step}.ckpt")
ckpt = dict(state_dict=model_ema.module.state_dict())
model_ema.module.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved EMA state to {save_path}")
if global_step % cfg.TRAIN.validation_steps == 0:
cur_rp1, cur_fid = validation(model)
if cfg.TRAIN.model_ema:
validation(model_ema.module, ema=True)
if cur_rp1 > max_rp1:
max_rp1 = cur_rp1
save_path = os.path.join(cfg.output_dir, 'checkpoints',
f"checkpoint-{global_step}-rp1-{round(cur_rp1, 3)}.ckpt")
ckpt = dict(state_dict=model.state_dict())
model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved state to {save_path} with rp1:{round(cur_rp1, 3)}")
if cur_fid < min_fid:
min_fid = cur_fid
save_path = os.path.join(cfg.output_dir, 'checkpoints',
f"checkpoint-{global_step}-fid-{round(cur_fid, 3)}.ckpt")
ckpt = dict(state_dict=model.state_dict())
model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved state to {save_path} with fid:{round(cur_fid, 3)}")
logs = {"loss": loss.item(),
"diff_loss": diff_loss.item(),
"router_loss": router_loss.item(),
"lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
for k, v in logs.items():
if cfg.vis == "tb":
writer.add_scalar(f"Train/{k}", v, global_step=global_step)
elif cfg.vis == "swanlab":
writer.log({f"Train/{k}": v}, step=global_step)
if global_step >= cfg.TRAIN.max_train_steps:
save_path = os.path.join(cfg.output_dir, 'checkpoints', f"checkpoint-last.ckpt")
ckpt = dict(state_dict=model.state_dict())
model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
if cfg.TRAIN.model_ema:
save_path = os.path.join(cfg.output_dir, 'checkpoints_ema', f"checkpoint-last.ckpt")
ckpt = dict(state_dict=model_ema.module.state_dict())
model_ema.module.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
exit(0)
if __name__ == "__main__":
main()