-
Notifications
You must be signed in to change notification settings - Fork 13
/
train_motion_control.py
217 lines (179 loc) · 8.84 KB
/
train_motion_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import sys
import logging
import datetime
import os.path as osp
from tqdm.auto import tqdm
from omegaconf import OmegaConf
import torch
import swanlab
import diffusers
import transformers
from torch.utils.tensorboard import SummaryWriter
from diffusers.optimization import get_scheduler
from mld.config import parse_args
from mld.data.get_data import get_dataset
from mld.models.modeltype.mld import MLD
from mld.utils.utils import print_table, set_seed, move_batch_to_device
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def main():
cfg = parse_args()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
set_seed(cfg.SEED_VALUE)
name_time_str = osp.join(cfg.NAME, datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
cfg.output_dir = osp.join(cfg.FOLDER, name_time_str)
os.makedirs(cfg.output_dir, exist_ok=False)
os.makedirs(f"{cfg.output_dir}/checkpoints", exist_ok=False)
if cfg.vis == "tb":
writer = SummaryWriter(cfg.output_dir)
elif cfg.vis == "swanlab":
writer = swanlab.init(project="MotionLCM",
experiment_name=os.path.normpath(cfg.output_dir).replace(os.path.sep, "-"),
suffix=None, config=dict(**cfg), logdir=cfg.output_dir)
else:
raise ValueError(f"Invalid vis method: {cfg.vis}")
stream_handler = logging.StreamHandler(sys.stdout)
file_handler = logging.FileHandler(osp.join(cfg.output_dir, 'output.log'))
handlers = [file_handler, stream_handler]
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=handlers)
logger = logging.getLogger(__name__)
OmegaConf.save(cfg, osp.join(cfg.output_dir, 'config.yaml'))
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
assert cfg.model.is_controlnet, "cfg.model.is_controlnet must be true for controlling!"
dataset = get_dataset(cfg)
train_dataloader = dataset.train_dataloader()
val_dataloader = dataset.val_dataloader()
logger.info(f"Loading pretrained model: {cfg.TRAIN.PRETRAINED}")
state_dict = torch.load(cfg.TRAIN.PRETRAINED, map_location="cpu")["state_dict"]
lcm_key = 'denoiser.time_embedding.cond_proj.weight'
is_lcm = False
if lcm_key in state_dict:
is_lcm = True
time_cond_proj_dim = state_dict[lcm_key].shape[1]
cfg.model.denoiser.params.time_cond_proj_dim = time_cond_proj_dim
logger.info(f'Is LCM: {is_lcm}')
model = MLD(cfg, dataset)
logger.info(model.load_state_dict(state_dict, strict=False))
logger.info(model.controlnet.load_state_dict(model.denoiser.state_dict(), strict=False))
model.vae.requires_grad_(False)
model.text_encoder.requires_grad_(False)
model.denoiser.requires_grad_(False)
model.vae.eval()
model.text_encoder.eval()
model.denoiser.eval()
model.to(device)
controlnet_params = list(model.controlnet.parameters())
traj_encoder_params = list(model.traj_encoder.parameters())
params = controlnet_params + traj_encoder_params
params_to_optimize = [{'params': controlnet_params, 'lr': cfg.TRAIN.learning_rate},
{'params': traj_encoder_params, 'lr': cfg.TRAIN.learning_rate_spatial}]
logger.info("learning_rate: {}, learning_rate_spatial: {}".
format(cfg.TRAIN.learning_rate, cfg.TRAIN.learning_rate_spatial))
optimizer = torch.optim.AdamW(
params_to_optimize,
betas=(cfg.TRAIN.adam_beta1, cfg.TRAIN.adam_beta2),
weight_decay=cfg.TRAIN.adam_weight_decay,
eps=cfg.TRAIN.adam_epsilon)
if cfg.TRAIN.max_train_steps == -1:
assert cfg.TRAIN.max_train_epochs != -1
cfg.TRAIN.max_train_steps = cfg.TRAIN.max_train_epochs * len(train_dataloader)
if cfg.TRAIN.checkpointing_steps == -1:
assert cfg.TRAIN.checkpointing_epochs != -1
cfg.TRAIN.checkpointing_steps = cfg.TRAIN.checkpointing_epochs * len(train_dataloader)
if cfg.TRAIN.validation_steps == -1:
assert cfg.TRAIN.validation_epochs != -1
cfg.TRAIN.validation_steps = cfg.TRAIN.validation_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
cfg.TRAIN.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.TRAIN.lr_warmup_steps,
num_training_steps=cfg.TRAIN.max_train_steps)
# Train!
logger.info("***** Running training *****")
logging.info(f" Num examples = {len(train_dataloader.dataset)}")
logging.info(f" Num Epochs = {cfg.TRAIN.max_train_epochs}")
logging.info(f" Instantaneous batch size per device = {cfg.TRAIN.BATCH_SIZE}")
logging.info(f" Total optimization steps = {cfg.TRAIN.max_train_steps}")
global_step = 0
@torch.no_grad()
def validation():
model.controlnet.eval()
model.traj_encoder.eval()
val_loss_list = []
for val_batch in tqdm(val_dataloader):
val_batch = move_batch_to_device(val_batch, device)
val_loss_dict = model.allsplit_step(split='val', batch=val_batch)
val_loss_list.append(val_loss_dict)
metrics = model.allsplit_epoch_end()
for loss_k in val_loss_list[0].keys():
metrics[f"Val/{loss_k}"] = sum([d[loss_k] for d in val_loss_list]).item() / len(val_dataloader)
min_val_km = metrics['Metrics/kps_mean_err(m)']
min_val_tj = metrics['Metrics/traj_fail_50cm']
print_table(f'Validation@Step-{global_step}', metrics)
for mk, mv in metrics.items():
if cfg.vis == "tb":
writer.add_scalar(mk, mv, global_step=global_step)
elif cfg.vis == "swanlab":
writer.log({mk: mv}, step=global_step)
model.controlnet.train()
model.traj_encoder.train()
return min_val_km, min_val_tj
min_km, min_tj = validation()
progress_bar = tqdm(range(0, cfg.TRAIN.max_train_steps), desc="Steps")
while True:
for step, batch in enumerate(train_dataloader):
batch = move_batch_to_device(batch, device)
loss_dict = model.allsplit_step('train', batch)
diff_loss = loss_dict['diff_loss']
cond_loss = loss_dict['cond_loss']
rot_loss = loss_dict['rot_loss']
loss = loss_dict['loss']
loss.backward()
torch.nn.utils.clip_grad_norm_(params, cfg.TRAIN.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
progress_bar.update(1)
global_step += 1
if global_step % cfg.TRAIN.checkpointing_steps == 0:
save_path = os.path.join(cfg.output_dir, 'checkpoints', f"checkpoint-{global_step}.ckpt")
ckpt = dict(state_dict=model.state_dict())
model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved state to {save_path}")
if global_step % cfg.TRAIN.validation_steps == 0:
cur_km, cur_tj = validation()
if cur_km < min_km:
min_km = cur_km
save_path = os.path.join(cfg.output_dir, 'checkpoints', f"checkpoint-{global_step}-km-{round(cur_km, 3)}.ckpt")
ckpt = dict(state_dict=model.state_dict())
model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved state to {save_path} with km:{round(cur_km, 3)}")
if cur_tj < min_tj:
min_tj = cur_tj
save_path = os.path.join(cfg.output_dir, 'checkpoints', f"checkpoint-{global_step}-tj-{round(cur_tj, 3)}.ckpt")
ckpt = dict(state_dict=model.state_dict())
model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved state to {save_path} with tj:{round(cur_tj, 3)}")
logs = {"loss": loss.item(), "lr": lr_scheduler.get_last_lr()[0],
"diff_loss": diff_loss.item(), 'cond_loss': cond_loss.item(), 'rot_loss': rot_loss.item()}
progress_bar.set_postfix(**logs)
for k, v in logs.items():
if cfg.vis == "tb":
writer.add_scalar(f"Train/{k}", v, global_step=global_step)
elif cfg.vis == "swanlab":
writer.log({f"Train/{k}": v}, step=global_step)
if global_step >= cfg.TRAIN.max_train_steps:
save_path = os.path.join(cfg.output_dir, 'checkpoints', f"checkpoint-last.ckpt")
ckpt = dict(state_dict=model.state_dict())
model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
exit(0)
if __name__ == "__main__":
main()