forked from rcdaudt/patch_based_change_detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSiamNet_15.py
46 lines (40 loc) · 1.64 KB
/
SiamNet_15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import torch.nn as nn
# Change detection network models
# Assumes 15x15 patches
# Rodrigo Caye Daudt
# https://rcdaudt.github.io/
class SiamNet_15(nn.Module):
def __init__(self, n_in = 3):
super(SiamNet_15, self).__init__()
self.layer_depth = [n_in, 64, 64, 128, 128, 64, 2]
self.cnn = nn.Sequential(
nn.Conv2d(self.layer_depth[0], self.layer_depth[1], kernel_size=3), # n=13
nn.BatchNorm2d(self.layer_depth[1]), # n=13
nn.ReLU(), # n=13
nn.Dropout2d(p=0.2), # n=13
nn.Conv2d(self.layer_depth[1], self.layer_depth[2], kernel_size=3), # n=11
nn.BatchNorm2d(self.layer_depth[2]), # n=11
nn.ReLU(), # n=11
nn.Dropout2d(p=0.2), # n=11
nn.Conv2d(self.layer_depth[2], self.layer_depth[3], kernel_size=3), # n=9
nn.BatchNorm2d(self.layer_depth[3]), # n=9
nn.ReLU(), # n=3
nn.Dropout2d(p=0.2), # n=9
nn.Conv2d(self.layer_depth[3], self.layer_depth[4], kernel_size=3), # n=7
nn.BatchNorm2d(self.layer_depth[4]), # n=7
nn.ReLU() # n=7
)
self.fc = nn.Sequential(
nn.Linear(2*7*7*self.layer_depth[4], self.layer_depth[5]),
nn.BatchNorm1d(self.layer_depth[5]),
nn.ReLU(),
nn.Dropout2d(p=0.2),
nn.Linear(self.layer_depth[5], self.layer_depth[6]),
nn.Softmax()
)
def forward(self, x1, x2):
output = torch.cat((self.cnn(x1), self.cnn(x2)), 1)
output = output.view(output.size(0), -1)
output = self.fc(output)
return output