forked from gregr/first-order-miniKanren
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexamples.rkt
108 lines (95 loc) · 3.71 KB
/
examples.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#lang racket
(provide (all-defined-out) (all-from-out "tools.rkt" racket/pretty))
(require "tools.rkt" racket/pretty)
(print-as-expression #f)
(pretty-print-abbreviate-read-macros #f)
(define-syntax example
(syntax-rules ()
((_ e) (begin (newline)
(pretty-print 'e)
(displayln "==>")
(pretty-print e)))))
(define-syntax examples
(syntax-rules ()
((_ e ...) (begin (example e) ...))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Examples
(define-relation (appendo ab c abc)
(conde
((== '() ab) (== c abc))
((fresh (a b bc)
(== `(,a . ,b) ab)
(== `(,a . ,bc) abc)
(appendo b c bc)))))
(examples
(run* (q) (appendo '(1 2 3) '(4 5) q))
(run* (p q) (appendo p q '(1 2 3 4 5)))
;; We can change our search strategy by choosing a different way to step.
;; `step` gives us a typical interleaving search.
(run*/step step (p q) (appendo p q '(1 2 3 4 5))))
(define-relation (reverseo ys sy)
(conde
((== '() ys) (== '() sy))
((fresh (first rest prefix)
(== `(,first . ,rest) ys)
;; With a typical search strategy, there is no refutationally complete
;; ordering of the following two goals. This ordering works well when
;; running in the forward direction, but not in the backward direction.
(reverseo rest prefix)
(appendo prefix `(,first) sy)))))
(examples
(run*/step step (q) (reverseo '(1 2 3) q))
;; Asking for more than one answer will fail to terminate.
(run/step step 1 (q) (reverseo q '(3 2 1)))
;; Using a refutationally complete search strategy solves the problem.
(run*/step parallel-step (q) (reverseo q '(3 2 1))))
(displayln
"We can explore the backwards reverseo query to observe its bad behavior.")
(displayln "Stop exploring by triggering EOF (probably Ctrl-D).")
(explore step (query (q) (reverseo q '(3 2 1))))
;; A miniscule relational interpreter.
(define-relation (evalo expr env value)
(conde
((== `(quote ,value) expr))
((fresh (index)
(== `(var ,index) expr)
(lookupo index env value)))
((fresh (a d va vd)
(== `(cons ,a ,d) expr)
(== `(,va . ,vd) value)
(evalo a env va)
(evalo d env vd)))))
;; Variables are represented namelessly using relative De Bruijn indices.
;; These indices are encoded as peano numerals: (), (s), (s s), etc.
(define-relation (lookupo index env value)
(fresh (arg e*)
(== `(,arg . ,e*) env)
(conde
((== '() index) (== arg value))
((fresh (i* a d)
(== `(s . ,i*) index)
(== `(,a . ,d) e*)
(lookupo i* e* value))))))
(displayln
"We can solve simple programming-by-example (PBE) problems by running our
interpreter backwards on multiple examples. Here, we'll synthesize a program
that repeats the input three times using two examples.
But with a typical search strategy, the constraints in the second example
remain dormant until the first example is fully satisfied. This delayed
feedback means we may deeply explore a hopeless program even when there is
shallow evidence that it will fail the second example. For example, we may
uselessly consider several programs of the form (cons (quote 0) _) when no such
program could ever succeed on the second example.")
(displayln "Stop exploring by triggering EOF (probably Ctrl-D).")
(explore step
(query (program)
(evalo program '(0) '(0 0 0))
(evalo program '(1) '(1 1 1))))
(displayln
"Using parallel-step allows us to expand constraints from both examples
simultaneously, pruning impossibilities much sooner.")
(displayln "Stop exploring by triggering EOF (probably Ctrl-D).")
(explore parallel-step
(query (program)
(evalo program '(0) '(0 0 0))
(evalo program '(1) '(1 1 1))))