-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathhandout.lyx
418 lines (325 loc) · 12.5 KB
/
handout.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#LyX 1.6.1 created this file. For more info see http://www.lyx.org/
\lyxformat 345
\begin_document
\begin_header
\textclass article
\use_default_options true
\language english
\inputencoding auto
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\cite_engine basic
\use_bibtopic false
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\author ""
\author ""
\end_header
\begin_body
\begin_layout Title
The Kohn Anomaly: Simple Theory
\end_layout
\begin_layout Author
Daniel Sank, Max Hofmann, James Wenner
\end_layout
\begin_layout Date
March 9, 2009
\end_layout
\begin_layout Section*
Introduction
\end_layout
\begin_layout Standard
Phonons are essentially (plane wave) displacements of the ion cores in a
solid.
Since the ion cores are charged a phonon can be thought of as a travelling
perturbation in the charge density distribution in a solid.
Since electrons are also charged it's clear that electrons and phonons
should interact in some way, and that the presence of each should affect
the dispersion relation of the other.
The Kohn anomaly refers to singularities in phonon dispersion relations
at certain wave-vectors q, arising from an abrupt change in the ability
of the electrons to screen the charge displacements induced by phonons
at those wave-vectors.
\end_layout
\begin_layout Standard
In order to demonstrate the presence of these singularities theoretically
we need to find some way of calculating the response of the electrons to
the charge perturbation caused by the phonons.
We do this using first order perturbation theory.
In particular we calculate the perturbed expectation value of the electron
density
\begin_inset Formula $\Psi^{\dagger}\Psi$
\end_inset
where the perturbing Hamiltonian is the electrostatic energy caused by
the phonon distortion of the ionic cores in the solid.
In the lingo of quantum many body theory this quantity is called the
\begin_inset Quotes eld
\end_inset
density-density correlation function.
\begin_inset Quotes erd
\end_inset
\end_layout
\begin_layout Standard
Note that we are treating the electrostatic perturbation caused by the phonon
as time independent.
This may seem strange given that in real processes phonons are really travellin
g wave packets, but the time independent picture is justified by the fact
that electrons equilibrate much faster than phonon lifetimes, and so as
far as the electrons are concerned the affect of the phonon is time independent.
\end_layout
\begin_layout Section*
Simple Calculation of Zero Frequency Correlation Function
\end_layout
\begin_layout Standard
We use first order (nondegenerate) perturbation theory to calculate the
density response of the free electron gas to an externally applied charge
distribution.
Recall that in first order perturbation theory the shift in the states
is given by the formula,
\begin_inset Formula \[
|n^{1}\rangle=\sum_{m\neq n}\frac{\langle m^{0}|\hat{V}|n^{0}\rangle}{E_{n}^{0}-E_{m}^{0}}|m^{0}\rangle\]
\end_inset
Therefore, the expectation value of an operator
\begin_inset Formula $A$
\end_inset
to first order is
\begin_inset Formula \begin{eqnarray*}
\langle A\rangle & = & \langle n|A|n\rangle=\langle n^{0}+n^{1}|A|n^{0}+n^{1}\rangle\\
\langle A\rangle & = & \langle n^{0}|A|n^{0}\rangle+\langle n^{0}|A|n^{1}\rangle+\langle n^{1}|A|n^{0}\rangle+O(V^{2})\\
\langle A\rangle-\langle A\rangle_{0} & = & 2\Re\langle n^{0}|A|n^{1}\rangle\\
\langle A\rangle-\langle A\rangle_{0}\equiv\delta\langle A\rangle & = & 2\Re\left[\sum_{m\neq n}\frac{\langle n^{0}|A|m^{0}\rangle\langle m^{0}|V|n^{0}\rangle}{E_{n}^{0}-E_{m}^{0}}\right]\qquad(*)\end{eqnarray*}
\end_inset
Our perturbing Hamiltonian will be the energy due to an externally applied
charge distribution,
\begin_inset Formula \[
V=\int d^{3}r\left[\rho_{\textrm{el}}(r)\right]\phi(r)=\int d^{3}r\left[\Psi^{\dagger}(r)\Psi(r)\right]\int dr'\frac{\rho_{\textrm{ext}}(r')}{|r-r'|}=\int d^{3}r\left(\Psi(r)\Psi(r)\right)\left[\rho*\frac{1}{r}\right](r)\]
\end_inset
where
\begin_inset Formula $\rho_{\textrm{el}}$
\end_inset
is the charge density of the electrons,
\begin_inset Formula $\rho$
\end_inset
is the externally applied (perturbing) charge distribution, and the * indicates
convolution.
By the convolution theorem
\begin_inset Formula ${\cal F}\left[f*g\right]={\cal F}\left[f\right]{\cal F}\left[g\right]$
\end_inset
, therefore
\begin_inset Formula \[
\left[\rho*\frac{1}{r}\right](r)=\int\frac{d^{3}k}{(2\pi)^{3}}e^{ikr}\rho(k)\frac{4\pi}{k^{2}}\]
\end_inset
where we've used the fact that that the Fourier transform of
\begin_inset Formula $\frac{1}{r}$
\end_inset
is
\begin_inset Formula $\frac{4\pi}{k^{2}}$
\end_inset
.
Plugging this into our expression for V we get
\begin_inset Formula \begin{eqnarray*}
V & = & \int d^{3}r\left(\Psi^{\dagger}(r)\Psi(r)\right)\left[\rho*\frac{1}{r}\right](r)=\int d^{3}r\left(\Psi^{\dagger}(r)\Psi(r)\right)\int\frac{d^{3}k}{(2\pi)^{3}}e^{ikr}\rho(k)\frac{4\pi}{k^{2}}\\
V & = & \int d^{3}r\left(\Psi^{\dagger}(r)\Psi(r)\right)\int\frac{d^{3}k}{(2\pi)^{3}}e^{ikr}\rho(k)\frac{4\pi}{k^{2}}\end{eqnarray*}
\end_inset
Consider the case where
\begin_inset Formula $\rho(r)=\rho_{0}e^{iqr}$
\end_inset
so that
\begin_inset Formula $\rho(k)=\rho_{0}(2\pi)^{3}\delta(k-q)$
\end_inset
.
Then we can do the k integral easily, leaving,
\begin_inset Formula \begin{eqnarray*}
V & = & 4\pi\frac{\rho_{0}}{q^{2}}\int d^{3}r\left(\Psi^{\dagger}(r)\Psi(r)\right)e^{iqr}\end{eqnarray*}
\end_inset
Now Fourier transform the
\begin_inset Formula $\Psi$
\end_inset
's, using
\begin_inset Formula $\Psi(r)=\int\frac{d^{3}k}{(2\pi)^{3}}e^{-ikr}a_{k}$
\end_inset
and
\begin_inset Formula $\Psi^{\dagger}(r)=\int\frac{d^{3}k'}{(2\pi)^{3}}e^{ik'r}a_{k'}^{\dagger}$
\end_inset
,
\begin_inset Formula \[
V=4\pi\frac{\rho_{0}}{q^{2}}\int d^{3}r\int\frac{d^{3}k}{(2\pi)^{3}}\int\frac{d^{3}k'}{(2\pi)^{3}}e^{i(k-k'+q)r}a_{k}^{\dagger}a_{k'}\]
\end_inset
The integral over
\begin_inset Formula $r$
\end_inset
can be done easily and gives
\begin_inset Formula $(2\pi)^{3}\delta(k-k'+q)$
\end_inset
.
We can then do the
\begin_inset Formula $k'$
\end_inset
integral, and what's left is
\begin_inset Formula \[
V=4\pi\frac{\rho_{0}}{q^{2}}\int\frac{d^{3}k}{(2\pi)^{3}}a_{k}^{\dagger}a_{k+q}\]
\end_inset
Change variables so that
\begin_inset Formula $k+q\rightarrow k$
\end_inset
to get
\begin_inset Formula \[
V=4\pi\frac{\rho_{0}}{q^{2}}\int\frac{d^{3}k}{(2\pi)^{3}}a_{k-q}^{\dagger}a_{k}\]
\end_inset
What we really want to calculate is
\begin_inset Formula $\langle m^{0}|V|n^{0}\rangle$
\end_inset
where
\begin_inset Formula $|m^{0}\rangle$
\end_inset
is an arbitrary state of the system and
\begin_inset Formula $|n^{0}\rangle$
\end_inset
is the thermal state away from which we're perturbing.
Let's consider the case
\begin_inset Formula $T=0$
\end_inset
so that
\begin_inset Formula $|n^{0}\rangle$
\end_inset
is just the pure state with all states filled up to the Fermi level, and
all other states empty.
Denote this state by
\begin_inset Formula $|\Omega\rangle$
\end_inset
from now on.
With this notation the matrix element we need is
\begin_inset Formula \[
\langle m^{0}|V|\Omega\rangle=4\pi\frac{\rho_{0}}{q^{2}}\int\frac{d^{3}k}{(2\pi)^{3}}\langle m^{0}|a_{k-q}^{\dagger}a_{k}|\Omega\rangle\]
\end_inset
The inner product sitting in the integral is only nonzero if
\begin_inset Formula $|m^{0}\rangle=a_{k-q}^{\dagger}a_{k}|\Omega\rangle$
\end_inset
, and then only if
\begin_inset Formula $k<k_{f}$
\end_inset
and
\begin_inset Formula $|k-q|>k_{F}$
\end_inset
(we exclude the case
\begin_inset Formula $q=0$
\end_inset
which is justified by charge neutrality of the system).
Therefore we can write
\begin_inset Formula \[
\langle m^{0}|V|\Omega\rangle=4\pi\frac{\rho_{0}}{q^{2}}\int\frac{d^{3}k}{(2\pi)^{3}}\delta\left[|m^{0}\rangle,a_{k-q}^{\dagger}a_{k}|\Omega\rangle\right]\Theta(k_{F}-k)\Theta(|k-q|-k_{F})\]
\end_inset
\end_layout
\begin_layout Standard
Inserting our result for
\begin_inset Formula $\langle m^{0}|V|\Omega\rangle$
\end_inset
into our expression for the perturbed expectation value of
\begin_inset Formula $A$
\end_inset
we ge
\begin_inset Formula \begin{eqnarray*}
\delta\langle A\rangle & = & 2\Re\left[4\pi\frac{\rho_{0}}{q^{2}}\int\frac{d^{3}k}{(2\pi)^{3}}\sum_{m\neq\Omega}\frac{\delta\left[|m^{0}\rangle,a_{k-q}^{\dagger}a_{k}|\Omega\rangle\right]\Theta(k_{F}-k)\Theta(|k-q|-k_{F})\langle\Omega|A|m^{0}\rangle}{E_{\Omega}-E_{m}^{0}}\right]\\
\delta\langle A\rangle & = & 2\Re\left[4\pi\frac{\rho_{0}}{q^{2}}\int\frac{d^{3}k}{(2\pi)^{3}}\frac{\Theta\left(k_{F}-k\right)\Theta\left(|k-q|-k_{F}\right)\langle\Omega|A|a_{k-q}^{\dagger}a_{k}\Omega\rangle}{E_{k}^{0}-E_{k-q}^{0}}\right]\end{eqnarray*}
\end_inset
where
\begin_inset Formula $E_{k}^{0}\equiv\hbar^{2}k^{2}/2m$
\end_inset
.
\end_layout
\begin_layout Standard
Remember that the operator who's perturbed expectation value we want to
know is the electron density
\begin_inset Formula $\Psi^{\dagger}(x)\Psi(x)$
\end_inset
.
Using Fourier transform we can write this operator as
\begin_inset Formula $A=\Psi^{\dagger}(x)\Psi(x)=\int\frac{d^{3}l}{(2\pi)^{3}}\int\frac{d^{3}s}{(2\pi)^{3}}e^{i(l-s)x}a_{l}^{\dagger}a_{s}$
\end_inset
, and inserting this into the equation for
\begin_inset Formula $\delta\langle A\rangle$
\end_inset
gives,
\begin_inset Formula \[
\delta\langle\Psi^{\dagger}(x)\Psi(x)\rangle=2\Re\left[4\pi\frac{\rho_{0}}{q^{2}}\int\frac{d^{3}k}{(2\pi)^{3}}\int\frac{d^{3}l}{(2\pi)^{3}}\int\frac{d^{3}s}{(2\pi)^{3}}e^{i(l-s)x}\frac{\Theta(k_{F}-k)\Theta(|k-q|-k_{F})\langle\Omega|a_{l}^{\dagger}a_{s}a_{k-q}^{\dagger}a_{k}|\Omega\rangle}{E_{k}^{0}-E_{k-q}^{0}}\right]\]
\end_inset
Let's process the matrix element
\begin_inset Formula $\langle\Omega|a_{l}^{\dagger}a_{s}a_{k-q}^{\dagger}a_{k}|\Omega\rangle$
\end_inset
.
Some thought in a peaceful moment reveals that the matrix element is nonzero
only when certain relations between
\begin_inset Formula $l,s,k,$
\end_inset
and
\begin_inset Formula $q$
\end_inset
hold.
These relations, along with the resulting factors they produce in the integrand
are summarized here
\begin_inset Formula \[
\begin{cases}
k<k_{F} & \quad\Theta\left(k_{F}-k\right)\\
|k-q|>k_{F} & \quad\Theta\left(|k-q|-k_{F}\right)\\
s=k-q & \quad(2\pi)^{3}\delta\left(s-(k-q)\right)\\
l=k & \quad(2\pi)^{3}\delta(l-k)\end{cases}\]
\end_inset
When these conditions are met the matrix element equals unity.
Stuffing all of this into the previous line for
\begin_inset Formula $\delta\langle A\rangle$
\end_inset
leaves us with
\begin_inset Formula \[
\delta\langle\Psi^{\dagger}(x)\Psi(x)\rangle=2\Re\left[4\pi\frac{\rho_{0}}{q^{2}}\int\frac{d^{3}k}{(2\pi)^{3}}e^{iqx}\frac{\Theta(k_{F}-k)\Theta(|k-q|-k_{F})}{E_{k}^{0}-E_{k-q}^{0}}\right]\]
\end_inset
This integral can be done by fairly elementary means.
The result is
\begin_inset Formula \[
\delta\langle\Psi^{\dagger}(x)\Psi(x)\rangle=(\textrm{constants})*\frac{\rho_{0}e^{iqx}}{q^{2}}\left\{ 1+\frac{k_{F}}{q}\left[1-\frac{q^{2}}{4k_{F}^{2}}\right]\log\bigg|\frac{q+2k_{F}}{q-2k_{F}}\bigg|\right\} \]
\end_inset
The relevant features of this result are as follows
\end_layout
\begin_layout Itemize
The electron density response is linear in the perturbation
\end_layout
\begin_layout Itemize
The amplitude of the response has a sharp peak at
\begin_inset Formula $q=2k_{F}$
\end_inset
indicating that the response of the electron gas to the charge perturbation
of a phonon changes abruptly at this wavevector.
\end_layout
\begin_layout Itemize
Since the electron-phonon coupling changes abruptly, we expect the properties
of the phonons and electrons to show interesting features when
\begin_inset Formula $q$
\end_inset
is near
\begin_inset Formula $2k_{F}$
\end_inset
.
\end_layout
\end_body
\end_document