-
Notifications
You must be signed in to change notification settings - Fork 481
/
Copy pathtrain.py
170 lines (150 loc) · 8.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse
import cv2
import os
import torch
from torch.nn import DataParallel
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from datasets.coco import CocoTrainDataset
from datasets.transformations import ConvertKeypoints, Scale, Rotate, CropPad, Flip
from modules.get_parameters import get_parameters_conv, get_parameters_bn, get_parameters_conv_depthwise
from models.with_mobilenet import PoseEstimationWithMobileNet
from modules.loss import l2_loss
from modules.load_state import load_state, load_from_mobilenet
from val import evaluate
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False) # To prevent freeze of DataLoader
def train(prepared_train_labels, train_images_folder, num_refinement_stages, base_lr, batch_size, batches_per_iter,
num_workers, checkpoint_path, weights_only, from_mobilenet, checkpoints_folder, log_after,
val_labels, val_images_folder, val_output_name, checkpoint_after, val_after):
net = PoseEstimationWithMobileNet(num_refinement_stages)
stride = 8
sigma = 7
path_thickness = 1
dataset = CocoTrainDataset(prepared_train_labels, train_images_folder,
stride, sigma, path_thickness,
transform=transforms.Compose([
ConvertKeypoints(),
Scale(),
Rotate(pad=(128, 128, 128)),
CropPad(pad=(128, 128, 128)),
Flip()]))
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
optimizer = optim.Adam([
{'params': get_parameters_conv(net.model, 'weight')},
{'params': get_parameters_conv_depthwise(net.model, 'weight'), 'weight_decay': 0},
{'params': get_parameters_bn(net.model, 'weight'), 'weight_decay': 0},
{'params': get_parameters_bn(net.model, 'bias'), 'lr': base_lr * 2, 'weight_decay': 0},
{'params': get_parameters_conv(net.cpm, 'weight'), 'lr': base_lr},
{'params': get_parameters_conv(net.cpm, 'bias'), 'lr': base_lr * 2, 'weight_decay': 0},
{'params': get_parameters_conv_depthwise(net.cpm, 'weight'), 'weight_decay': 0},
{'params': get_parameters_conv(net.initial_stage, 'weight'), 'lr': base_lr},
{'params': get_parameters_conv(net.initial_stage, 'bias'), 'lr': base_lr * 2, 'weight_decay': 0},
{'params': get_parameters_conv(net.refinement_stages, 'weight'), 'lr': base_lr * 4},
{'params': get_parameters_conv(net.refinement_stages, 'bias'), 'lr': base_lr * 8, 'weight_decay': 0},
{'params': get_parameters_bn(net.refinement_stages, 'weight'), 'weight_decay': 0},
{'params': get_parameters_bn(net.refinement_stages, 'bias'), 'lr': base_lr * 2, 'weight_decay': 0},
], lr=base_lr, weight_decay=5e-4)
num_iter = 0
current_epoch = 0
drop_after_epoch = [100, 200, 260]
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=drop_after_epoch, gamma=0.333)
if checkpoint_path:
checkpoint = torch.load(checkpoint_path)
if from_mobilenet:
load_from_mobilenet(net, checkpoint)
else:
load_state(net, checkpoint)
if not weights_only:
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
num_iter = checkpoint['iter']
current_epoch = checkpoint['current_epoch']
net = DataParallel(net).cuda()
net.train()
for epochId in range(current_epoch, 280):
scheduler.step()
total_losses = [0, 0] * (num_refinement_stages + 1) # heatmaps loss, paf loss per stage
batch_per_iter_idx = 0
for batch_data in train_loader:
if batch_per_iter_idx == 0:
optimizer.zero_grad()
images = batch_data['image'].cuda()
keypoint_masks = batch_data['keypoint_mask'].cuda()
paf_masks = batch_data['paf_mask'].cuda()
keypoint_maps = batch_data['keypoint_maps'].cuda()
paf_maps = batch_data['paf_maps'].cuda()
stages_output = net(images)
losses = []
for loss_idx in range(len(total_losses) // 2):
losses.append(l2_loss(stages_output[loss_idx * 2], keypoint_maps, keypoint_masks, images.shape[0]))
losses.append(l2_loss(stages_output[loss_idx * 2 + 1], paf_maps, paf_masks, images.shape[0]))
total_losses[loss_idx * 2] += losses[-2].item() / batches_per_iter
total_losses[loss_idx * 2 + 1] += losses[-1].item() / batches_per_iter
loss = losses[0]
for loss_idx in range(1, len(losses)):
loss += losses[loss_idx]
loss /= batches_per_iter
loss.backward()
batch_per_iter_idx += 1
if batch_per_iter_idx == batches_per_iter:
optimizer.step()
batch_per_iter_idx = 0
num_iter += 1
else:
continue
if num_iter % log_after == 0:
print('Iter: {}'.format(num_iter))
for loss_idx in range(len(total_losses) // 2):
print('\n'.join(['stage{}_pafs_loss: {}', 'stage{}_heatmaps_loss: {}']).format(
loss_idx + 1, total_losses[loss_idx * 2 + 1] / log_after,
loss_idx + 1, total_losses[loss_idx * 2] / log_after))
for loss_idx in range(len(total_losses)):
total_losses[loss_idx] = 0
if num_iter % checkpoint_after == 0:
snapshot_name = '{}/checkpoint_iter_{}.pth'.format(checkpoints_folder, num_iter)
torch.save({'state_dict': net.module.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'iter': num_iter,
'current_epoch': epochId},
snapshot_name)
if num_iter % val_after == 0:
print('Validation...')
evaluate(val_labels, val_output_name, val_images_folder, net)
net.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--prepared-train-labels', type=str, required=True,
help='path to the file with prepared annotations')
parser.add_argument('--train-images-folder', type=str, required=True, help='path to COCO train images folder')
parser.add_argument('--num-refinement-stages', type=int, default=1, help='number of refinement stages')
parser.add_argument('--base-lr', type=float, default=4e-5, help='initial learning rate')
parser.add_argument('--batch-size', type=int, default=80, help='batch size')
parser.add_argument('--batches-per-iter', type=int, default=1, help='number of batches to accumulate gradient from')
parser.add_argument('--num-workers', type=int, default=8, help='number of workers')
parser.add_argument('--checkpoint-path', type=str, required=True, help='path to the checkpoint to continue training from')
parser.add_argument('--from-mobilenet', action='store_true',
help='load weights from mobilenet feature extractor')
parser.add_argument('--weights-only', action='store_true',
help='just initialize layers with pre-trained weights and start training from the beginning')
parser.add_argument('--experiment-name', type=str, default='default',
help='experiment name to create folder for checkpoints')
parser.add_argument('--log-after', type=int, default=100, help='number of iterations to print train loss')
parser.add_argument('--val-labels', type=str, required=True, help='path to json with keypoints val labels')
parser.add_argument('--val-images-folder', type=str, required=True, help='path to COCO val images folder')
parser.add_argument('--val-output-name', type=str, default='detections.json',
help='name of output json file with detected keypoints')
parser.add_argument('--checkpoint-after', type=int, default=5000,
help='number of iterations to save checkpoint')
parser.add_argument('--val-after', type=int, default=5000,
help='number of iterations to run validation')
args = parser.parse_args()
checkpoints_folder = '{}_checkpoints'.format(args.experiment_name)
if not os.path.exists(checkpoints_folder):
os.makedirs(checkpoints_folder)
train(args.prepared_train_labels, args.train_images_folder, args.num_refinement_stages, args.base_lr, args.batch_size,
args.batches_per_iter, args.num_workers, args.checkpoint_path, args.weights_only, args.from_mobilenet,
checkpoints_folder, args.log_after, args.val_labels, args.val_images_folder, args.val_output_name,
args.checkpoint_after, args.val_after)