forked from fcdl94/WILSON
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegmentation_module.py
256 lines (193 loc) · 8.17 KB
/
segmentation_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
import torch.nn as nn
import torch.nn.functional as functional
import inplace_abn
from inplace_abn import InPlaceABNSync, InPlaceABN, ABN
from functools import partial, reduce
import models
from modules import DeeplabV3, custom_bn
import torch.distributed as distributed
def get_norm(opts):
if opts.norm_act == 'iabn_sync':
norm = partial(InPlaceABNSync, activation="leaky_relu", activation_param=.01, group=distributed.group.WORLD)
elif opts.norm_act == 'iabn':
norm = partial(InPlaceABN, activation="leaky_relu", activation_param=.01)
elif opts.norm_act == 'abr':
norm = partial(custom_bn.ABR, activation="leaky_relu", activation_param=.01)
elif opts.norm_act == 'iabr':
norm = partial(custom_bn.InPlaceABR, activation="leaky_relu", activation_param=.01)
else: # std bn + leaky RELU -> NO INPLACE here
norm = partial(ABN, activation="leaky_relu", activation_param=.01)
return norm
def get_body(opts, norm):
body = models.__dict__[f'net_{opts.backbone}'](norm_act=norm, output_stride=opts.output_stride)
if not opts.no_pretrained:
if opts.backbone == "wider_resnet38_a2":
pretrained_path = f'pretrained/wide_resnet38_ipabn_lr_256.pth.tar'
else:
pretrained_path = f'pretrained/{opts.backbone}_iabn_sync.pth.tar'
pre_dict = torch.load(pretrained_path, map_location='cpu')
new_state = {}
for k, v in pre_dict['state_dict'].items():
if "module" in k:
new_state[k[7:]] = v
else:
new_state[k] = v
if 'classifier.fc.weight' in new_state:
del new_state['classifier.fc.weight']
del new_state['classifier.fc.bias']
body.load_state_dict(new_state)
del pre_dict # free memory
del new_state
return body
def make_model(opts, classes=None):
norm = get_norm(opts)
body = get_body(opts, norm)
head_channels = 256
head = DeeplabV3(body.out_channels, head_channels, 256, norm_act=norm,
out_stride=opts.output_stride, pooling_size=opts.pooling)
if classes is not None:
model = IncrementalSegmentationModule(body, head, head_channels, classes=classes)
else:
model = SegmentationModule(body, head, head_channels, opts.num_classes)
return model
def flip(x, dim):
indices = [slice(None)] * x.dim()
indices[dim] = torch.arange(x.size(dim) - 1, -1, -1,
dtype=torch.long, device=x.device)
return x[tuple(indices)]
class IncrementalClassifier(nn.ModuleList):
def forward(self, input):
out = []
for mod in self:
out.append(mod(input))
sem_logits = torch.cat(out, dim=1)
return sem_logits
class IncrementalSegmentationModule(nn.Module):
def __init__(self, body, head, head_channels, classes):
super(IncrementalSegmentationModule, self).__init__()
self.body = body
self.head = head
# classes must be a list where [n_class_task[i] for i in tasks]
assert isinstance(classes, list), \
"Classes must be a list where to every index correspond the num of classes for that task"
self.cls = IncrementalClassifier(
[nn.Conv2d(head_channels, c, 1) for c in classes]
)
self.classes = classes
self.head_channels = head_channels
self.tot_classes = reduce(lambda a, b: a + b, self.classes)
def init_new_classifier(self, device):
cls = self.cls[-1]
imprinting_w = self.cls[0].weight[0]
bkg_bias = self.cls[0].bias[0]
bias_diff = torch.log(torch.FloatTensor([self.classes[-1] + 1])).to(device)
new_bias = (bkg_bias - bias_diff)
cls.weight.data.copy_(imprinting_w)
cls.bias.data.copy_(new_bias)
self.cls[0].bias[0].data.copy_(new_bias.squeeze(0))
def forward(self, x, as_feature_extractor=False, interpolate=True, scales=None, do_flip=False):
out_size = x.shape[-2:]
x_b, x_b3 = self.body(x, ret_int=True)
if not as_feature_extractor:
x_pl = self.head(x_b)
sem_logits = self.cls(x_pl)
if interpolate:
sem_logits = functional.interpolate(sem_logits, size=out_size, mode="bilinear", align_corners=False)
return sem_logits, {"body": x_b, "pre_logits": x_pl, 'b3': x_b3}
else:
return {"body": x_b, 'b3': x_b3}
def freeze(self):
for par in self.parameters():
par.requires_grad = False
def fix_bn(self):
for m in self.modules():
if isinstance(m, nn.BatchNorm2d) or isinstance(m, inplace_abn.ABN):
m.eval()
m.weight.requires_grad = False
m.bias.requires_grad = False
class _MeanFusion:
def __init__(self, x, classes):
self.buffer = x.new_zeros(x.size(0), classes, x.size(2), x.size(3))
self.counter = 0
def update(self, sem_logits):
# probs = F.softmax(sem_logits, dim=1)
self.counter += 1
self.buffer.add_((sem_logits - self.buffer) / self.counter)
def output(self):
_, cls = self.buffer.max(1)
return self.buffer, cls
class _SumFusion:
def __init__(self, x, classes):
self.buffer = x.new_zeros(x.size(0), classes, x.size(2), x.size(3))
self.counter = 0
def update(self, sem_logits):
self.counter += 1
self.buffer.add_(sem_logits)
def output(self):
_, cls = self.buffer.max(1)
return self.buffer, cls
class TestAugmentation:
def __init__(self, classes, scales=None, do_flip=True, fusion='mean'):
self.scales = scales if scales is not None else [1.]
self.do_flip = do_flip
self.fusion_cls = _MeanFusion if fusion == "mean" else _SumFusion
self.classes = classes
def __call__(self, func, x):
fusion = self.fusion_cls(x, self.classes)
out_size = x.shape[-2:]
for scale in self.scales:
# Main orientation
if scale != 1:
scaled_size = [round(s * scale) for s in x.shape[-2:]]
x_up = nn.functional.interpolate(x, size=scaled_size, mode="bilinear", align_corners=False)
else:
x_up = x
# Flipped orientation
if self.do_flip:
x_up = torch.cat((x_up, flip(x_up, -1)), dim=0)
sem_logits = func(x_up)
sem_logits = nn.functional.interpolate(sem_logits, size=out_size, mode="bilinear", align_corners=False)
if self.do_flip:
fusion.update(flip(sem_logits[1].unsqueeze(0), -1))
sem_logits = sem_logits[0].unsqueeze(0)
fusion.update(sem_logits)
return fusion.output()
class SegmentationModule(nn.Module):
def __init__(self, body, head, head_channels, classifier):
super(SegmentationModule, self).__init__()
self.body = body
self.head = head
self.head_channels = head_channels
self.cls = classifier
def forward(self, x, use_classifier=True, return_feat=False, return_body=False,
only_classifier=False, only_head=False):
if only_classifier:
return self.cls(x)
elif only_head:
return self.cls(self.head(x))
else:
x_b = self.body(x)
if isinstance(x_b, dict):
x_b = x_b["out"]
out = self.head(x_b)
out_size = x.shape[-2:]
if use_classifier:
sem_logits = self.cls(out)
sem_logits = functional.interpolate(sem_logits, size=out_size, mode="bilinear", align_corners=False)
else:
sem_logits = out
if return_feat:
if return_body:
return sem_logits, out, x_b
return sem_logits, out
return sem_logits
def freeze(self):
for par in self.parameters():
par.requires_grad = False
def fix_bn(self):
for m in self.modules():
if isinstance(m, nn.BatchNorm2d) or isinstance(m, inplace_abn.ABN):
m.eval()
m.weight.requires_grad = False
m.bias.requires_grad = False