forked from MatthewPeterKelly/OptimTraj
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimTraj.m
196 lines (190 loc) · 7.15 KB
/
optimTraj.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
function soln = optimTraj(problem)
% soln = optimTraj(problem)
%
% Solves a trajectory optimization problem.
%
% INPUT: "problem" -- struct with fields:
%
% func -- struct for user-defined functions, passed as function handles
%
% Input Notes: square braces show size: [a,b] = size()
% t = [1, nTime] = time vector (grid points)
% x = [nState, nTime] = state vector at each grid point
% u = [nControl, nTime] = control vector at each grid point
% t0 = scalar = initial time
% tF = scalar = final time
% x0 = [nState, 1] = initial state
% xF = [nState, 1] = final state
%
% dx = dynamics(t,x,u)
% dx = [nState, nTime] = dx/dt = derivative of state wrt time
%
% dObj = pathObj(t,x,u)
% dObj = [1, nTime] = integrand from the cost function
%
% obj = bndObj(t0,x0,tF,xF)
% obj = scalar = objective function for boundry points
%
% [c, ceq] = pathCst(t,x,u)
% c = column vector of inequality constraints ( c <= 0 )
% ceq = column vector of equality constraints ( c == 0 )
%
% [c, ceq] = bndCst(t0,x0,tF,xF)
% c = column vector of inequality constraints ( c <= 0 )
% ceq = column vector of equality constraints ( c == 0 )
%
% How to pass parameters to your functions:
% - suppose that your dynamics function is pendulum.m and it
% accepts a struct of parameters p. When you are setting up the
% problem, define the struc p in your workspace and then use the
% following command to pass the function:
% problem.func.dynamics = @(t,x,u)( pendulum(t,x,u,p) );
%
% Analytic Gradients:
% Both the "trapezoid" and "hermiteSimpson" methods in OptimTraj
% support analytic gradients. Type help "trapezoid" or help
% "hermiteSimpson" for details on how to pass gradients to the
% transcription method.
%
%
% bounds - struct with bounds for the problem:
%
% .initialTime.low = [scalar]
% .initialTime.upp = [scalar]
%
% .finalTime.low = [scalar]
% .finalTime.upp = [scalar]
%
% .state.low = [nState,1] = lower bound on the state
% .state.upp = [nState,1] = lower bound on the state
%
% .initialState.low = [nState,1]
% .initialState.upp = [nState,1]
%
% .finalState.low = [nState,1]
% .finalState.upp = [nState,1]
%
% .control.low = [nControl, 1]
% .control.upp = [nControl, 1]
%
%
%
% guess - struct with an initial guess at the trajectory
%
% .time = [1, nGridGuess]
% .state = [nState, nGridGuess]
% .control = [nControl, nGridGuess]
%
% options = options for the transcription algorithm (this function)
%
% .nlpOpt = options to pass through to fmincon
%
% .method = string to pick which method is used for transcription
% 'trapezoid'
% 'hermiteSimpson'
% 'chebyshev'
% 'rungeKutta'
% 'gpops' ( Must have GPOPS2 installed )
%
% .[method] = a struct to pass method-specific parameters. For
% example, to pass the number of grid-points to the trapezoid method,
% create a field .trapezoid.nGrid = [number of grid-points].
%
% .verbose = integer
% 0 = no display
% 1 = default
% 2 = display warnings, overrides fmincon display setting
% 3 = debug
%
% .defaultAccuracy = {'low','medium','high'}
% Sets the default options for each transcription method
%
% * if options is a struct array, the optimTraj will run the optimization
% by running options(1) and then using the result to initialize a new
% solve with options(2) and so on, until it runs options (end). This
% allows for successive grid and tolerance opdates.
%
%
%
%
%
% OUTPUT: "soln" -- struct with fields:
%
% .grid = trajectory at the grid-points used by the transcription method
% .time = [1, nTime]
% .state = [nState, nTime]
% .control = [nControl, nTime];
%
% .interp = functions for interpolating state and control for arbitrary
% times long the trajectory. The interpolation method will match the
% underlying transcription method. This is particularily important
% for high-order methods, where linear interpolation between the
% transcription grid-points will lead to large errors. If the
% requested time is not on the trajectory, the interpolation will
% return NaN.
%
% .state = @(t) = given time, return state
% In: t = [1,n] vector of time
% Out: x = [nState,n] state vector at each point in time
%
% .control = @(t) = given time, return control
% In: t = [1,n] vector of time
% Out: u = [nControl,n] state vector at each point in time
%
% .info = information about the optimization run
% .nlpTime = time (seconds) spent in fmincon
% .exitFlag = fmincon exit flag
% .objVal = value of the objective function
% .[all fields in the fmincon "output" struct]
%
% .problem = the problem as it was passed to the low-level transcription,
% including the all default values that were used
%
%
% * If problem.options was a struct array, then soln will also be a
% struct array, with soln(1) being the solution on the first iteration,
% and soln(end) being the final solution.
%
% * Both the trapezoid and hermiteSimpson method support additional
% features. The first is that they can use analytic gradients, if
% provided by the user. ">> help trapezoid" or ">> help hermiteSimpson"
% for more information. These methods additionally provide error
% estimates in two forms. The continuous collocation constraint error is
% provided as an additional function handle (soln.interp.collCst), and
% the absolute local error estimate for each segment is provided in
% soln.info.error.
%
problem = inputValidation(problem); %Check inputs
problem = getDefaultOptions(problem); % Complete options struct
% Loop over the options struct to solve the problem
nIter = length(problem.options);
soln(nIter) = struct('grid',[],'interp',[],'info',[],'problem',[]);
P = problem; %Temp variable for passing on each iteration
for iter=1:nIter
P.options = problem.options(iter);
if P.options.verbose > 0 %then print out iteration count:
disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~');
disp(['Running OptimTraj, iteration ' num2str(iter)]);
end
if iter > 1 %Use previous soln as new guess
P.guess = soln(iter-1).grid;
end
%%%% This is the key part: call the underlying transcription method:
switch P.options.method
case 'trapezoid'
soln(iter) = trapezoid(P);
case 'hermiteSimpson'
soln(iter) = hermiteSimpson(P);
case 'chebyshev'
soln(iter) = chebyshev(P);
case 'multiCheb'
soln(iter) = multiCheb(P);
case 'rungeKutta'
soln(iter) = rungeKutta(P);
case 'gpops'
soln(iter) = gpopsWrapper(P);
otherwise
error('Invalid method. Type: ''help optimTraj'' for a valid list.');
end
end
end