diff --git a/.github/workflows/create_release.yml b/.github/workflows/create_release.yml index 2fe090f776..001a938ae6 100644 --- a/.github/workflows/create_release.yml +++ b/.github/workflows/create_release.yml @@ -52,17 +52,36 @@ jobs: uses: actions/setup-dotnet@v3 with: dotnet-version: '6.0.x' + - name: Setup MinGW-w64 + uses: egor-tensin/setup-mingw@v2 + with: + platform: x64 - name: Build run: | export DOTNET_CLI_TELEMETRY_OPTOUT=1 assembly_version="${{ needs.get_release_info.outputs.version }}" dotnet build --configuration "${{ matrix.build_target}}" -p:Version="$assembly_version" --verbosity normal "Dawn of Light.sln" echo "dotnet DOLServer.dll" > "${{ matrix.build_target }}/DOLServer.bat" + - name: Build DOL Detour (Linux x64) + run: | + mkdir Pathing/Detour/build + cd Pathing/Detour/build + cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=g++ .. + make + cp libdol_detour.so ../../../${{ matrix.build_target }}/ + - name: Build DOL Detour (Windows x64) + run: | + mkdir Pathing/Detour/build_win64 + cd Pathing/Detour/build_win64 + cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_SYSTEM_NAME=Windows -DCMAKE_C_COMPILER=x86_64-w64-mingw32-gcc -DCMAKE_CXX_COMPILER=x86_64-w64-mingw32-g++-posix -DCMAKE_SHARED_LINKER_FLAGS="-static" .. + make + cp libdol_detour.dll ../../../${{ matrix.build_target }}/dol_detour.dll - name: Test Build run: | dotnet test --verbosity normal --filter "DOL.UnitTests&TestCategory!=Explicit" ./build/Tests/${{ matrix.build_target }}/lib/Tests.dll dotnet test --verbosity normal --filter "DOL.Integration&TestCategory!=Explicit" ./build/Tests/${{ matrix.build_target }}/lib/Tests.dll - name: Add DOLConfig + if: ${{ github.repository_owner == 'Dawn-of-Light' }} run: | dolconfig_location="$(dirname $(git remote get-url origin))/DOLConfig/releases/latest/download/DOLConfig_${{ matrix.build_target }}.zip" wget "$dolconfig_location" -O DOLConfig.zip diff --git a/.gitignore b/.gitignore index c75c560481..dd8c63a8dd 100644 --- a/.gitignore +++ b/.gitignore @@ -7,4 +7,5 @@ /old/build /old/Debug /old/Release +/Pathing/Detour/build **/*.csproj.user diff --git a/GameServer/GameServer.cs b/GameServer/GameServer.cs index 5d09ba0d08..a86da39d87 100644 --- a/GameServer/GameServer.cs +++ b/GameServer/GameServer.cs @@ -600,6 +600,11 @@ public override bool Start() if (!InitComponent(WorldMgr.EarlyInit(out regionsData), "World Manager PreInitialization")) return false; + //--------------------------------------------------------------- + //Try to initialize the Pathing Manager + if (!InitComponent(PathingMgr.Init(), "Pathing Manager Initialization")) + return false; + //--------------------------------------------------------------- //Try to initialize the script components if (!InitComponent(StartScriptComponents(), "Script components")) diff --git a/GameServer/ai/brain/StandardMobBrain.cs b/GameServer/ai/brain/StandardMobBrain.cs index 4f50f10baf..31e5c124e6 100644 --- a/GameServer/ai/brain/StandardMobBrain.cs +++ b/GameServer/ai/brain/StandardMobBrain.cs @@ -29,6 +29,7 @@ using DOL.GS.Keeps; using DOL.Language; using log4net; +using System.Numerics; namespace DOL.AI.Brain { @@ -138,7 +139,7 @@ public override void Think() } else { - Body.WalkTo(target, 50); + Body.PathTo(target, 50); } Body.FireAmbientSentence(GameNPC.eAmbientTrigger.roaming); @@ -1552,6 +1553,14 @@ defaut roaming range is defined in CanRandomWalk method public virtual IPoint3D CalcRandomWalkTarget() { + if (PathCalculator.IsSupported(Body)) + { + int radius = Body.RoamingRange > 0 ? Body.RoamingRange : 500; + var target = PathingMgr.Instance.GetRandomPointAsync(Body.CurrentZone, new Vector3(Body.X, Body.Y, Body.Z), radius); + if (target.HasValue) + return new Point3D(target.Value.X, target.Value.Y, target.Value.Z); + } + int maxRoamingRadius = Body.CurrentRegion.IsDungeon ? 5 : 500; if (Body.RoamingRange > 0) diff --git a/GameServer/commands/gmcommands/GMinfo.cs b/GameServer/commands/gmcommands/GMinfo.cs index 06af52824f..f82893bab6 100644 --- a/GameServer/commands/gmcommands/GMinfo.cs +++ b/GameServer/commands/gmcommands/GMinfo.cs @@ -703,6 +703,7 @@ public void OnCommand(GameClient client, string[] args) info.Add(" Zone Height: "+ client.Player.CurrentZone.Height); info.Add(" Zone DivingEnabled: " + client.Player.CurrentZone.IsDivingEnabled); info.Add(" Zone Waterlevel: " + client.Player.CurrentZone.Waterlevel); + info.Add(" Zone Pathing: " + (PathingMgr.Instance.HasNavmesh(client.Player.CurrentZone) ? "enabled" : "disabled")); info.Add(" "); info.Add(" Region Name: "+ client.Player.CurrentRegion.Name); info.Add(" Region Description: " + client.Player.CurrentRegion.Description); diff --git a/GameServer/gameobjects/GameNPC.cs b/GameServer/gameobjects/GameNPC.cs index 20e2f6bd18..1cd0835d34 100644 --- a/GameServer/gameobjects/GameNPC.cs +++ b/GameServer/gameobjects/GameNPC.cs @@ -39,6 +39,8 @@ using DOL.Language; using DOL.GS.ServerProperties; using DOL.GS.Finance; +using System.Threading.Tasks; +using System.Numerics; namespace DOL.GS { @@ -1367,13 +1369,16 @@ public uint LastVisibleToPlayersTickCount /// protected class ArriveAtTargetAction : RegionAction { + private Action m_goToNodeCallback; + /// /// Constructs a new ArriveAtTargetAction /// /// The action source - public ArriveAtTargetAction(GameNPC actionSource) + public ArriveAtTargetAction(GameNPC actionSource, Action goToNodeCallback = null) : base(actionSource) { + m_goToNodeCallback = goToNodeCallback; } /// @@ -1384,6 +1389,11 @@ public ArriveAtTargetAction(GameNPC actionSource) protected override void OnTick() { GameNPC npc = (GameNPC)m_actionSource; + if (m_goToNodeCallback != null) + { + m_goToNodeCallback(npc); + return; + } bool arriveAtSpawnPoint = npc.IsReturningToSpawnPoint; @@ -1485,9 +1495,92 @@ public virtual void WalkTo(IPoint3D target, short speed) BroadcastUpdate(); } - private void StartArriveAtTargetAction(int requiredTicks) + public PathCalculator PathCalculator { get; protected set; } + /// + /// Finds a valid path to the destination (or picks the direct path otherwise). Uses WalkTo for each of the pathing nodes. + /// + /// + /// + /// true if a path was found + public bool PathTo(IPoint3D dest, short? speed = null) + { + var walkSpeed = speed ?? MaxSpeed; + if (!PathCalculator.ShouldPath(this, new Vector3(dest.X, dest.Y, dest.Z))) + { + WalkTo(dest, walkSpeed); + return false; + } + + // Initialize pathing if possible and required + if (PathCalculator == null) + { + if (!PathCalculator.IsSupported(this)) + { + WalkTo(dest, walkSpeed); + return false; + } + // TODO: Only make this check once on spawn since it internally calls .CurrentZone + hashtable lookup? + PathCalculator = new PathCalculator(this); + } + + // Pick the next pathing node, and walk towards it + Vector3? nextNode = null; + bool didFindPath = false; + bool shouldUseAirPath = true; + if (PathCalculator != null) + { + var res = PathCalculator.CalculateNextTarget(new Vector3(dest.X, dest.Y, dest.Z)); + nextNode = res.Item1; + var noPathReason = res.Item2; + shouldUseAirPath = noPathReason == NoPathReason.RECAST_FOUND_NO_PATH; + didFindPath = PathCalculator.DidFindPath; + } + + // Directly walk towards the target (or call the customly provided action) + if (!nextNode.HasValue) + { + WalkTo(dest, walkSpeed); + return false; + } + + // Do the actual pathing bit: Walk towards the next pathing node + WalkTo(nextNode.Value, walkSpeed, npc => npc.PathTo(dest, speed)); + return true; + } + + private void WalkTo(Vector3 node, short speed, Action goToNextNodeCallback) + { + if (IsTurningDisabled) + return; + + if (speed > MaxSpeed) + speed = MaxSpeed; + + if (speed <= 0) + return; + + TargetPosition = new Point3D(node.X, node.Y, node.Z); // this also saves the current position + + if (IsWithinRadius(TargetPosition, 5)) + { + goToNextNodeCallback(this); + return; + } + + CancelWalkToTimer(); + + m_Heading = GetHeading(TargetPosition); + m_currentSpeed = speed; + + UpdateTickSpeed(); + StartArriveAtTargetAction(GetTicksToArriveAt(TargetPosition, speed), goToNextNodeCallback); + BroadcastUpdate(); + } + + + private void StartArriveAtTargetAction(int requiredTicks, Action goToNextNodeCallback = null) { - m_arriveAtTargetAction = new ArriveAtTargetAction(this); + m_arriveAtTargetAction = new ArriveAtTargetAction(this, goToNextNodeCallback); m_arriveAtTargetAction.Start((requiredTicks > 1) ? requiredTicks : 1); } @@ -1528,7 +1621,7 @@ public virtual void WalkToSpawn(short speed) IsReturningHome = true; IsReturningToSpawnPoint = true; - WalkTo(SpawnPoint, speed); + PathTo(SpawnPoint, speed); } /// diff --git a/GameServer/world/Pathing/Extensions.cs b/GameServer/world/Pathing/Extensions.cs new file mode 100644 index 0000000000..e5afadc175 --- /dev/null +++ b/GameServer/world/Pathing/Extensions.cs @@ -0,0 +1,20 @@ +using System.Numerics; + +namespace DOL.GS +{ + static class Extensions + { + public static bool IsInRange(this Vector3 value, Vector3 target, float range) + { + // SH: Removed Z checks when one of the two Z values is zero(on ground) + if (value.Z == 0 || target.Z == 0) + return Vector2.DistanceSquared(value.ToVector2(), target.ToVector2()) <= range * range; + return Vector3.DistanceSquared(value, target) <= range * range; + } + + public static Vector2 ToVector2(this Vector3 value) + { + return new Vector2(value.X, value.Y); + } + } +} diff --git a/GameServer/world/Pathing/IPathingMgr.cs b/GameServer/world/Pathing/IPathingMgr.cs new file mode 100644 index 0000000000..771f27c5ba --- /dev/null +++ b/GameServer/world/Pathing/IPathingMgr.cs @@ -0,0 +1,55 @@ +using System.Numerics; +using System.Threading.Tasks; + +namespace DOL.GS +{ + public interface IPathingMgr + { + /// + /// Initializes the PathingMgr by loading all available navmeshes + /// + /// + bool Init(); + + /// + /// Stops the PathingMgr and releases all loaded navmeshes + /// + void Stop(); + + /// + /// Returns a path that prevents collisions with the navmesh, but floats freely otherwise + /// + /// + /// Start in GlobalXYZ + /// End in GlobalXYZ + /// + WrappedPathingResult GetPathStraightAsync(Zone zone, Vector3 start, Vector3 end); + + /// + /// Returns a random point on the navmesh around the given position + /// + /// Zone + /// Start in GlobalXYZ + /// End in GlobalXYZ + /// null if no point found, Vector3 with point otherwise + Vector3? GetRandomPointAsync(Zone zone, Vector3 position, float radius); + + /// + /// Returns the closest point on the navmesh, if available, or no point found. + /// Returns the input position if no navmesh is available + /// + Vector3? GetClosestPointAsync(Zone zone, Vector3 position, float xRange = 256f, float yRange = 256f, float zRange = 256f); + + /// + /// True if pathing is enabled for the specified zone + /// + /// + /// + bool HasNavmesh(Zone zone); + + /// + /// True if currently running & working + /// + bool IsAvailable { get; } + } +} \ No newline at end of file diff --git a/GameServer/world/Pathing/LocalPathingMgr.cs b/GameServer/world/Pathing/LocalPathingMgr.cs new file mode 100644 index 0000000000..e13ec0a997 --- /dev/null +++ b/GameServer/world/Pathing/LocalPathingMgr.cs @@ -0,0 +1,350 @@ +using System; +using System.Collections.Generic; +using System.IO; +using System.Numerics; +using System.Reflection; +using System.Runtime.InteropServices; +using System.Threading; +using System.Threading.Tasks; +using log4net; + +namespace DOL.GS +{ + /// + /// Pathing + /// + public class LocalPathingMgr : IPathingMgr + { + public const float CONVERSION_FACTOR = 1.0f / 32f; + private const float INV_FACTOR = (1f / CONVERSION_FACTOR); + + [Flags] + private enum dtStatus : uint + { + // High level status. + DT_SUCCESS = 1u << 30, // Operation succeed. + + // Detail information for status. + DT_PARTIAL_RESULT = 1 << 6, // Query did not reach the end location, returning best guess. + } + + public enum dtStraightPathOptions : uint + { + DT_STRAIGHTPATH_NO_CROSSINGS = 0x00, // Do not add extra vertices on polygon edge crossings. + DT_STRAIGHTPATH_AREA_CROSSINGS = 0x01, // Add a vertex at every polygon edge crossing where area changes. + DT_STRAIGHTPATH_ALL_CROSSINGS = 0x02, // Add a vertex at every polygon edge crossing. + } + + private const int MAX_POLY = 256; // max vector3 when looking up a path (for straight paths too) + + private static readonly ILog log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); + private static Dictionary _navmeshPtrs = new Dictionary(); + private static ThreadLocal> _navmeshQueries = new ThreadLocal>(() => new Dictionary()); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)] + private static extern bool LoadNavMesh(string file, ref IntPtr meshPtr); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern bool FreeNavMesh(IntPtr meshPtr); + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern bool CreateNavMeshQuery(IntPtr meshPtr, ref IntPtr queryPtr); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern bool FreeNavMeshQuery(IntPtr queryPtr); + + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern dtStatus PathStraight(IntPtr queryPtr, float[] start, float[] end, float[] polyPickExt, dtPolyFlags[] queryFilter, dtStraightPathOptions pathOptions, ref int pointCount, float[] pointBuffer, dtPolyFlags[] pointFlags); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern dtStatus FindRandomPointAroundCircle(IntPtr queryPtr, float[] center, float radius, float[] polyPickExt, dtPolyFlags[] queryFilter, float[] outputVector); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern dtStatus FindClosestPoint(IntPtr queryPtr, float[] center, float[] polyPickExt, dtPolyFlags[] queryFilter, float[] outputVector); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern dtStatus GetPolyAt(IntPtr queryPtr, float[] center, float[] polyPickExt, dtPolyFlags[] queryFilter, ref uint outputPolyRef, float[] outputVector); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern dtStatus SetPolyFlags(IntPtr meshPtr, uint polyRef, dtPolyFlags flags); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern dtStatus QueryPolygons(IntPtr queryPtr, float[] center, float[] polyPickExt, dtPolyFlags[] queryFilter, uint[] outputPolyRefs, ref int outputPolyCount, int maxPolyCount); + + [DllImport("kernel32.dll")] + private static extern IntPtr LoadLibrary(string dllName); + [DllImport("libdl.so")] + private static extern IntPtr dlopen(string file, int mode); + + private class NavMeshQuery : IDisposable + { + IntPtr _query; + + public NavMeshQuery(IntPtr navMesh) + { + if (!CreateNavMeshQuery(navMesh, ref this._query)) + throw new Exception("can't create NavMeshQuery"); + } + public void Dispose() + { + if (_query != IntPtr.Zero) + FreeNavMeshQuery(_query); + } + + public static implicit operator IntPtr(NavMeshQuery query) => query._query; + } + + /// + /// Initializes the PathingMgr by loading all available navmeshes + /// + /// + public bool Init() + { + try + { + if (Environment.OSVersion.Platform == PlatformID.Win32NT) + if (LoadLibrary("lib\\dol_detour.dll") != IntPtr.Zero) + log.Debug("dol_detour.dll loaded from LoadLibrary \"lib\\dol_detour.dll\""); + if (Environment.OSVersion.Platform == PlatformID.Unix) + if (dlopen("lib/libdol_detour.so", 2 /* RTLD_NOW */) != IntPtr.Zero) + log.Debug("libdol_detour.so loaded from dlopen \"lib/libdol_detour.so\""); + } + catch + { + } + + try + { + var dummy = IntPtr.Zero; + LoadNavMesh("this file does not exists!", ref dummy); + } + catch (Exception e) + { + log.ErrorFormat("The current process is a {0} process!", (Environment.Is64BitProcess ? "64bit" : "32bit")); + log.ErrorFormat("PathingMgr did not find the dol_detour.dll! Error message: {0}", e.ToString()); + return false; + } + + foreach (var zone in WorldMgr.Zones.Values) + LoadNavMesh(zone); + return true; + } + + /// + /// Loads the navmesh for the specified zone (if available) + /// + /// + public void LoadNavMesh(Zone zone) + { + if (_navmeshPtrs.ContainsKey(zone.ID)) + throw new Exception($"Loading NavMesh failed for zone {zone.ID}: already loaded"); + var id = zone.ID; + var file = Path.GetFullPath(Path.Join("pathing", $"zone{id:D3}.nav")); + if (!File.Exists(file)) + { + log.DebugFormat("Loading NavMesh failed for zone {0}! (File not found: {1})", id, file); + return; + } + + var meshPtr = IntPtr.Zero; + + if (!LoadNavMesh(file, ref meshPtr)) + { + log.ErrorFormat("Loading NavMesh failed for zone {0}!", id); + return; + } + + if (meshPtr == IntPtr.Zero) + { + log.ErrorFormat("Loading NavMesh failed for zone {0}! (Pointer was zero!)", id); + return; + } + log.InfoFormat("Loading NavMesh sucessful for zone {0}", id); + _navmeshPtrs[zone.ID] = meshPtr; + zone.IsPathingEnabled = true; + } + + /// + /// Unloads the navmesh for a specific zone + /// + /// + public void UnloadNavMesh(Zone zone) + { + if (_navmeshPtrs.ContainsKey(zone.ID)) + { + zone.IsPathingEnabled = false; + FreeNavMesh(_navmeshPtrs[zone.ID]); + _navmeshPtrs.Remove(zone.ID); + } + } + + /// + /// Stops the PathingMgr and releases all loaded navmeshes + /// + public void Stop() + { + foreach (var ptr in _navmeshPtrs.Values) + FreeNavMesh(ptr); + _navmeshPtrs.Clear(); + } + + private static float[] ToRecastFloats(Vector3 value) + { + return new[] { value.X * LocalPathingMgr.CONVERSION_FACTOR, value.Z * LocalPathingMgr.CONVERSION_FACTOR, value.Y * LocalPathingMgr.CONVERSION_FACTOR }; + } + + /// + /// Returns a path that prevents collisions with the navmesh, but floats freely otherwise + /// + /// + /// Start in GlobalXYZ + /// End in GlobalXYZ + /// + public WrappedPathingResult GetPathStraightAsync(Zone zone, Vector3 start, Vector3 end) + { + if (!_navmeshPtrs.ContainsKey(zone.ID)) + return new WrappedPathingResult + { + Error = PathingError.NoPathFound, + Points = null, + }; + + var result = new WrappedPathingResult(); + NavMeshQuery query; + if (!_navmeshQueries.Value.TryGetValue(zone.ID, out query)) + { + query = new NavMeshQuery(_navmeshPtrs[zone.ID]); + _navmeshQueries.Value.Add(zone.ID, query); + } + var startFloats = ToRecastFloats(start + Vector3.UnitZ * 8); + var endFloats = ToRecastFloats(end + Vector3.UnitZ * 8); + + var numNodes = 0; + var buffer = new float[MAX_POLY * 3]; + var flags = new dtPolyFlags[MAX_POLY]; + dtPolyFlags includeFilter = dtPolyFlags.ALL ^ dtPolyFlags.DISABLED; + dtPolyFlags excludeFilter = 0; + var polyExt = ToRecastFloats(new Vector3(64, 64, 256)); + dtStraightPathOptions options = dtStraightPathOptions.DT_STRAIGHTPATH_ALL_CROSSINGS; + var filter = new[] { includeFilter, excludeFilter }; + var status = PathStraight(query, startFloats, endFloats, polyExt, filter, options, ref numNodes, buffer, flags); + if ((status & dtStatus.DT_SUCCESS) == 0) + { + result.Error = PathingError.NoPathFound; + result.Points = null; + return result; + } + + var points = new WrappedPathPoint[numNodes]; + var positions = Vector3ArrayFromRecastFloats(buffer, numNodes); + + for (var i = 0; i < numNodes; i++) + { + points[i].Position = positions[i]; + points[i].Flags = flags[i]; + } + + if ((status & dtStatus.DT_PARTIAL_RESULT) == 0) + result.Error = PathingError.PathFound; + else + result.Error = PathingError.PathFound; + result.Points = points; + + return result; + } + + /// + /// Returns a random point on the navmesh around the given position + /// + /// Zone + /// Start in GlobalXYZ + /// End in GlobalXYZ + /// null if no point found, Vector3 with point otherwise + public Vector3? GetRandomPointAsync(Zone zone, Vector3 position, float radius) + { + if (!_navmeshPtrs.ContainsKey(zone.ID)) + return null; + + //GSStatistics.Paths.Inc(); + + Vector3? result = null; + NavMeshQuery query; + if (!_navmeshQueries.Value.TryGetValue(zone.ID, out query)) + { + query = new NavMeshQuery(_navmeshPtrs[zone.ID]); + _navmeshQueries.Value.Add(zone.ID, query); + } + var ptrs = _navmeshPtrs[zone.ID]; + var center = ToRecastFloats(position + Vector3.UnitZ * 8); + var cradius = (radius * CONVERSION_FACTOR); + var outVec = new float[3]; + + var defaultInclude = (dtPolyFlags.ALL ^ dtPolyFlags.DISABLED); + var defaultExclude = (dtPolyFlags)0; + var filter = new dtPolyFlags[] { defaultInclude, defaultExclude }; + + var polyPickEx = new float[3] { 2.0f, 4.0f, 2.0f }; + + var status = FindRandomPointAroundCircle(query, center, cradius, polyPickEx, filter, outVec); + + if ((status & dtStatus.DT_SUCCESS) != 0) + result = new Vector3(outVec[0] * INV_FACTOR, outVec[2] * INV_FACTOR, outVec[1] * INV_FACTOR); + + return result; + } + + /// + /// Returns the closest point on the navmesh (UNTESTED! EXPERIMENTAL! WILL GO SUPERNOVA ON USE! MAYBE!?) + /// + public Vector3? GetClosestPointAsync(Zone zone, Vector3 position, float xRange = 256f, float yRange = 256f, float zRange = 256f) + { + if (!_navmeshPtrs.ContainsKey(zone.ID)) + return position; // Assume the point is safe if we don't have a navmesh + //GSStatistics.Paths.Inc(); + + Vector3? result = null; + NavMeshQuery query; + if (!_navmeshQueries.Value.TryGetValue(zone.ID, out query)) + { + query = new NavMeshQuery(_navmeshPtrs[zone.ID]); + _navmeshQueries.Value.Add(zone.ID, query); + } + var ptrs = _navmeshPtrs[zone.ID]; + var center = ToRecastFloats(position + Vector3.UnitZ * 8); + var outVec = new float[3]; + + var defaultInclude = (dtPolyFlags.ALL ^ dtPolyFlags.DISABLED); + var defaultExclude = (dtPolyFlags)0; + var filter = new dtPolyFlags[] { defaultInclude, defaultExclude }; + + var polyPickEx = ToRecastFloats(new Vector3(xRange, yRange, zRange)); + + var status = FindClosestPoint(query, center, polyPickEx, filter, outVec); + + if ((status & dtStatus.DT_SUCCESS) != 0) + result = new Vector3(outVec[0] * INV_FACTOR, outVec[2] * INV_FACTOR, outVec[1] * INV_FACTOR); + + return result; + } + + private Vector3[] Vector3ArrayFromRecastFloats(float[] buffer, int numNodes) + { + var result = new Vector3[numNodes]; + for (var i = 0; i < numNodes; i++) + result[i] = new Vector3(buffer[i * 3 + 0] * INV_FACTOR, buffer[i * 3 + 2] * INV_FACTOR, buffer[i * 3 + 1] * INV_FACTOR); + return result; + } + + /// + /// True if pathing is enabled for the specified zone + /// + /// + /// + public bool HasNavmesh(Zone zone) + { + return zone != null && _navmeshPtrs.ContainsKey(zone.ID); + } + + public bool IsAvailable => true; + } +} diff --git a/GameServer/world/Pathing/NoPathToTargetException.cs b/GameServer/world/Pathing/NoPathToTargetException.cs new file mode 100644 index 0000000000..702f76bf54 --- /dev/null +++ b/GameServer/world/Pathing/NoPathToTargetException.cs @@ -0,0 +1,13 @@ +namespace DOL.GS +{ + /// + /// Reason for why no path was found + /// + public enum NoPathReason + { + NOPROBLEM, + UNKNOWN, + RECAST_FOUND_NO_PATH, + DOOR_EN_ROUTE, + } +} diff --git a/GameServer/world/Pathing/NullPathingMgr.cs b/GameServer/world/Pathing/NullPathingMgr.cs new file mode 100644 index 0000000000..0dd5c0fe12 --- /dev/null +++ b/GameServer/world/Pathing/NullPathingMgr.cs @@ -0,0 +1,42 @@ +using System.Numerics; +using System.Threading.Tasks; + +namespace DOL.GS +{ + /// + /// Always unavailable pathing mgr + /// + public class NullPathingMgr : IPathingMgr + { + public bool Init() + { + return true; + } + + public void Stop() + { + } + + public WrappedPathingResult GetPathStraightAsync(Zone zone, Vector3 start, Vector3 end) + { + return new WrappedPathingResult() { Error = PathingError.NavmeshUnavailable }; + } + + public Vector3? GetRandomPointAsync(Zone zone, Vector3 position, float radius) + { + return null; + } + + public Vector3? GetClosestPointAsync(Zone zone, Vector3 position, float xRange = 256, float yRange = 256, float zRange = 256) + { + return position; + } + + public bool HasNavmesh(Zone zone) + { + return false; + } + + public bool IsAvailable => false; + } +} diff --git a/GameServer/world/Pathing/PathCalculator.cs b/GameServer/world/Pathing/PathCalculator.cs new file mode 100644 index 0000000000..36317b3562 --- /dev/null +++ b/GameServer/world/Pathing/PathCalculator.cs @@ -0,0 +1,267 @@ +using System; +using System.Collections.Generic; +using System.Linq; +using System.Numerics; +using System.Reflection; +using System.Threading; +using log4net; + +namespace DOL.GS +{ + /// + /// Path calculator component that can be added to any NPC to calculate paths + /// @author mlinder + /// + public sealed class PathCalculator + { + /// + /// Defines a logger for this class. + /// + private static readonly ILog log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); + + /// + /// Minimum distance that a target has to be away before we start plotting paths instead of directly + /// walking towards the target. Includes Z. + /// + public const int MIN_PATHING_DISTANCE = 80; + + /// + /// Minimum distance difference required before a path is being replotted + /// + public const int MIN_TARGET_DIFF_REPLOT_DISTANCE = 80; + + /// + /// Distance at which we consider a pathing node reached + /// + public const int NODE_REACHED_DISTANCE = 24; + + /// + /// Distance to search for doors when computing NextDoor. + /// + private const int DOOR_SEARCH_DISTANCE = 512; + + /// + /// True if this calculator can be used for the specified NPC. + /// + /// + /// + public static bool IsSupported(GameNPC o) + { + return o?.CurrentZone != null && o.CurrentZone.IsPathingEnabled; + } + + /// + /// Owner to which this calculator belongs to. Used for calculating position offsets + /// + public GameNPC Owner { get; private set; } + + /// + /// If set, contains the next door on the NPCs path + /// + public GameDoor NextDoor { get; private set; } + + private readonly Queue _pathNodes = new Queue(); + private Vector3 _lastTarget = Vector3.Zero; + + /// + /// Forces the path to be replot on the next CalculateNextTarget(...) + /// + public bool ForceReplot { get; set; } + + /// + /// True if a path to the target was plotted. False if resorting back to air/direct route + /// + public bool DidFindPath { get; private set; } + + /// + /// Creates a path calculator for the given NPC + /// + /// + public PathCalculator(GameNPC owner) + { + ForceReplot = true; + Owner = owner; + } + + /// + /// True if we should path towards the target point + /// + /// + /// + private bool ShouldPath(Vector3 target) + { + return ShouldPath(Owner, target); + } + + /// + /// Clears all data stored in this calculator + /// + public void Clear() + { + _pathNodes.Clear(); + _lastTarget = Vector3.Zero; + DidFindPath = false; + ForceReplot = true; + } + + /// + /// True if we should path towards the target point + /// + /// + /// + /// + public static bool ShouldPath(GameNPC owner, Vector3 target) + { + if (owner.GetDistanceTo(target) < MIN_PATHING_DISTANCE) + return false; // too close to path + if (owner.IsFlying) + return false; + if (owner.Z <= 0) + return false; // this will probably result in some really awkward paths otherwise + var zone = owner.CurrentZone; + if (zone == null || !zone.IsPathingEnabled) + return false; // we're in nirvana + if (owner.CurrentRegion.GetZone((int)target.X, (int)target.Y) != zone) + return false; // target is in a different zone (TODO: implement this maybe? not sure if really required) + return true; + } + + //private readonly Meter noPathFoundMetric = Metric.Meter("NoPathFound", Unit.Calls); + + /// + /// Semaphore to prevent multiple replots + /// + private int isReplottingPath = IDLE; + const int IDLE = 0, REPLOTTING = 1; + + private void ReplotPath(Vector3 target) + { + // Try acquiring a pathing lock + if (Interlocked.CompareExchange(ref isReplottingPath, REPLOTTING, IDLE) != IDLE) + { + // Computation is already in progress. ReplotPathAsync will be called again automatically by .PathTo every few ms + return; + } + + // we make a blocking call here because we are already in a worker thread and inside a lock + try + { + var currentZone = Owner.CurrentZone; + var currrentPos = new Vector3(Owner.X, Owner.Y, Owner.Z); + var pathingResult = PathingMgr.Instance.GetPathStraightAsync(currentZone, currrentPos, target); + + lock (_pathNodes) + { + _pathNodes.Clear(); + if (pathingResult.Error != PathingError.NoPathFound && pathingResult.Error != PathingError.NavmeshUnavailable && + pathingResult.Points != null) + { + DidFindPath = true; + var to = pathingResult.Points.Length - 1; /* remove target node only if no partial path */ + if (pathingResult.Error == PathingError.PartialPathFound) + { + to = pathingResult.Points.Length; + } + for (int i = 1; i < to; i++) /* remove first node */ + { + var pt = pathingResult.Points[i]; + if (pt.Position.X < -500000) + { + log.Error("PathCalculator.ReplotPath returned weird node: " + pt + " (result=" + pathingResult.Error + + "); this=" + this); + } + _pathNodes.Enqueue(pt); + } + } + else + { + //noPathFoundMetric.Mark(); + DidFindPath = false; + } + _lastTarget = target; + ForceReplot = false; + } + } + finally + { + if (Interlocked.Exchange(ref isReplottingPath, IDLE) != REPLOTTING) + { + log.Warn("PathCalc semaphore was in IDLE state even though we were replotting. This should never happen"); + } + } + } + + /// + /// Calculates the next point this NPC should walk to to reach the target + /// + /// + /// Next path node, or null if target reached. Throws a NoPathToTargetException if path is blocked/returns> + public Tuple CalculateNextTarget(Vector3 target) + { + if (!ShouldPath(target)) + { + DidFindPath = true; // not needed + return new Tuple(null, NoPathReason.NOPROBLEM); + } + + // Check if we can reuse our path. We assume that we ourselves never "suddenly" warp to a completely + // different position. + if (ForceReplot || !_lastTarget.IsInRange(target, MIN_TARGET_DIFF_REPLOT_DISTANCE)) + { + ReplotPath(target); + } + + // Find the next node in the path to the target, but skip points that are too close + while (_pathNodes.Count > 0 && Owner.IsWithinRadius(_pathNodes.Peek().Position, NODE_REACHED_DISTANCE)) + { + _pathNodes.Dequeue(); + } + + // Scan the next few nodes for a potential door + // TODO(mlinder): Implement support for doors + NextDoor = null; + /*foreach (var node in _pathNodes.Take(1)) { + if ((node.Flags & dtPolyFlags.DOOR) != 0) { + var currentNode = node; + try { + NextDoor = + DoorMgr.GetDoorsInRadius(Owner.Region, node.Position, DOOR_SEARCH_DISTANCE) + .MinBy(x => x.Position.DistanceSquared(currentNode.Position)); + // TODO(mlinder): Confirm whether this actually makes sure that the path goes through a door, and not just next to it? + } catch (InvalidOperationException) { + // TODO(mlinder): this is really inefficient b/c of exception handling, duh + Owner.DebugSend("Did not find door in radius"); + } + break; + } + } + + // Open doors automagically (maybe not the best place to do this?) + if (NextDoor != null) { + Owner.DebugSend("There is a door on the next segment: {0}", NextDoor); + if (!DealWithDoorOnPath(NextDoor)) + { + return new Tuple(null, NoPathReason.DOOR_EN_ROUTE); + } + }*/ + + if (_pathNodes.Count == 0) + { + // Path end reached, or no path found + if (!DidFindPath) + return new Tuple(null, NoPathReason.RECAST_FOUND_NO_PATH); + return new Tuple(null, NoPathReason.UNKNOWN); // no more nodes (or no path) + } + + // Just walk to the next pathing node + var next = _pathNodes.Peek(); + return new Tuple(next.Position, NoPathReason.NOPROBLEM); + } + + public override string ToString() + { + return + $"PathCalc[Target={_lastTarget}, Nodes={_pathNodes.Count}, NextNode={(_pathNodes.Count > 0 ? _pathNodes.Peek().ToString() : null)}, NextDoor={NextDoor}]"; + } + } +} diff --git a/GameServer/world/Pathing/PathingMgr.cs b/GameServer/world/Pathing/PathingMgr.cs new file mode 100644 index 0000000000..1110895a45 --- /dev/null +++ b/GameServer/world/Pathing/PathingMgr.cs @@ -0,0 +1,55 @@ +using System; +using System.Reflection; +using log4net; + +namespace DOL.GS +{ + /// + /// Wrapper for the currently active pathing mgr + /// + public static class PathingMgr + { + private static readonly ILog log = LogManager.GetLogger(MethodBase.GetCurrentMethod().DeclaringType); + + /// + /// PathingMgr that does nothing + /// + public static readonly IPathingMgr NullPathingMgr = new NullPathingMgr(); + + /// + /// Calculates data locally and performs calls here + /// + public static readonly LocalPathingMgr LocalPathingMgr = new LocalPathingMgr(); + + public static bool Init() + { + log.Info("Starting PathingMgr"); + if (LocalPathingMgr.Init()) + SetPathingMgr(LocalPathingMgr); + else + SetPathingMgr(NullPathingMgr); + return true; + } + + /// + /// Changes the active pathing mgr + /// + /// + public static void SetPathingMgr(IPathingMgr mgr) + { + log.Info($"Setting PathingMgr to {mgr}"); + Instance = (mgr == null) ? NullPathingMgr : mgr; + } + + public static void Stop() + { + log.Info("Stopping PathingMgr"); + LocalPathingMgr.Stop(); + } + + /// + /// Currently used instance + /// + public static IPathingMgr Instance { get; private set; } = NullPathingMgr; + } +} diff --git a/GameServer/world/Pathing/Structs.cs b/GameServer/world/Pathing/Structs.cs new file mode 100644 index 0000000000..fbd30088cc --- /dev/null +++ b/GameServer/world/Pathing/Structs.cs @@ -0,0 +1,46 @@ +using System; +using System.Numerics; + +namespace DOL.GS +{ + public struct WrappedPathingResult + { + public PathingError Error; + public WrappedPathPoint[] Points; + } + + + public struct WrappedPathPoint + { + public Vector3 Position; + public dtPolyFlags Flags; + + public override string ToString() + { + return $"({Position}, {Flags})"; + } + } + + [Flags] + public enum dtPolyFlags : ushort + { + WALK = 0x01, // Ability to walk (ground, grass, road) + SWIM = 0x02, // Ability to swim (water). + DOOR = 0x04, // Ability to move through doors. + JUMP = 0x08, // Ability to jump. + DISABLED = 0x10, // Disabled polygon + DOOR_ALB = 0x20, + DOOR_MID = 0x40, + DOOR_HIB = 0x80, + ALL = 0xffff // All abilities. + } + + public enum PathingError + { + UNKNOWN = 0, + PathFound = 1, + PartialPathFound = 2, + NoPathFound = 3, + NavmeshUnavailable = 4 + } +} diff --git a/GameServer/world/Point3D.cs b/GameServer/world/Point3D.cs index d70aa1f0a3..fa8508e92d 100644 --- a/GameServer/world/Point3D.cs +++ b/GameServer/world/Point3D.cs @@ -17,6 +17,7 @@ * */ using System; +using System.Numerics; namespace DOL.GS { @@ -131,6 +132,11 @@ public virtual int GetDistanceTo(IPoint3D point, double zfactor) return (int) Math.Sqrt(dx*dx + dy*dy + dz*dz); } + public virtual float GetDistanceTo(Vector3 point) + { + return Vector3.Distance(new Vector3(X, Y, Z), point); + } + /// /// Determine if another point is within a given radius /// @@ -195,5 +201,12 @@ public bool IsWithinRadius(IPoint3D point, int radius, bool ignoreZ) return true; } + + public bool IsWithinRadius(Vector3 point, int radius, bool ignoreZ = false) + { + if (ignoreZ || point.Z == 0 || Z == 0) + return Vector2.DistanceSquared(new Vector2(X, Y), point.ToVector2()) <= radius * radius; + return Vector3.DistanceSquared(new Vector3(X, Y, Z), point) <= radius * radius; + } } } \ No newline at end of file diff --git a/GameServer/world/Zone.cs b/GameServer/world/Zone.cs index 07c8e57149..1974d8d707 100644 --- a/GameServer/world/Zone.cs +++ b/GameServer/world/Zone.cs @@ -452,6 +452,7 @@ public int TotalNumberOfObjects get { return m_objectCount; } } + public bool IsPathingEnabled { get; set; } = false; #endregion #region New subzone Management function diff --git a/Pathing/Detour/CMakeLists.txt b/Pathing/Detour/CMakeLists.txt new file mode 100644 index 0000000000..2063541e1f --- /dev/null +++ b/Pathing/Detour/CMakeLists.txt @@ -0,0 +1,48 @@ +cmake_minimum_required(VERSION 3.00) +project(DOL_Detour) + +file(GLOB SOURCES Source/*.cpp) +add_library(dol_detour SHARED ${SOURCES}) + +add_library(RecastNavigation::Detour ALIAS dol_detour) +set_target_properties(dol_detour PROPERTIES DEBUG_POSTFIX -d) + +set(dol_detour_INCLUDE_DIR "${CMAKE_CURRENT_SOURCE_DIR}/Include") + +target_include_directories(dol_detour PUBLIC + "$" +) + +find_package(Threads) +target_link_libraries(dol_detour ${CMAKE_THREAD_LIBS_INIT}) + +set_target_properties(dol_detour PROPERTIES + SOVERSION ${SOVERSION} + VERSION ${LIB_VERSION} + COMPILE_PDB_OUTPUT_DIRECTORY . + COMPILE_PDB_NAME "dol_detour-d" + ) + +install(TARGETS dol_detour + RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} + ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} + LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} + COMPONENT library + ) + +file(GLOB INCLUDES Include/*.h) +install(FILES ${INCLUDES} DESTINATION + ${CMAKE_INSTALL_INCLUDEDIR}/recastnavigation) +if(MSVC) + install(FILES "$/dol_detour-d.pdb" CONFIGURATIONS "Debug" DESTINATION "lib") +endif() + +# Tests +file(GLOB TEST_SOURCES Test/*.cpp) +file(GLOB NAVS Test/*.nav) +add_executable(detour_test ${TEST_SOURCES}) +set(detour_test "${CMAKE_CURRENT_SOURCE_DIR}/Include") +file(COPY ${NAVS} DESTINATION ${CMAKE_CURRENT_BINARY_DIR}) +target_compile_features(detour_test PRIVATE cxx_std_17) +target_link_libraries(detour_test dol_detour ${CMAKE_THREAD_LIBS_INIT}) +add_test(NAME detour_test COMMAND detour_test) diff --git a/Pathing/Detour/Include/DetourAlloc.h b/Pathing/Detour/Include/DetourAlloc.h new file mode 100644 index 0000000000..f87b454acb --- /dev/null +++ b/Pathing/Detour/Include/DetourAlloc.h @@ -0,0 +1,61 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#ifndef DETOURALLOCATOR_H +#define DETOURALLOCATOR_H + +#include + +/// Provides hint values to the memory allocator on how long the +/// memory is expected to be used. +enum dtAllocHint +{ + DT_ALLOC_PERM, ///< Memory persist after a function call. + DT_ALLOC_TEMP ///< Memory used temporarily within a function. +}; + +/// A memory allocation function. +// @param[in] size The size, in bytes of memory, to allocate. +// @param[in] rcAllocHint A hint to the allocator on how long the memory is expected to be in use. +// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed. +/// @see dtAllocSetCustom +typedef void* (dtAllocFunc)(size_t size, dtAllocHint hint); + +/// A memory deallocation function. +/// @param[in] ptr A pointer to a memory block previously allocated using #dtAllocFunc. +/// @see dtAllocSetCustom +typedef void (dtFreeFunc)(void* ptr); + +/// Sets the base custom allocation functions to be used by Detour. +/// @param[in] allocFunc The memory allocation function to be used by #dtAlloc +/// @param[in] freeFunc The memory de-allocation function to be used by #dtFree +void dtAllocSetCustom(dtAllocFunc *allocFunc, dtFreeFunc *freeFunc); + +/// Allocates a memory block. +/// @param[in] size The size, in bytes of memory, to allocate. +/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use. +/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed. +/// @see dtFree +void* dtAlloc(size_t size, dtAllocHint hint); + +/// Deallocates a memory block. +/// @param[in] ptr A pointer to a memory block previously allocated using #dtAlloc. +/// @see dtAlloc +void dtFree(void* ptr); + +#endif diff --git a/Pathing/Detour/Include/DetourAssert.h b/Pathing/Detour/Include/DetourAssert.h new file mode 100644 index 0000000000..e05fd66fa5 --- /dev/null +++ b/Pathing/Detour/Include/DetourAssert.h @@ -0,0 +1,56 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#ifndef DETOURASSERT_H +#define DETOURASSERT_H + +// Note: This header file's only purpose is to include define assert. +// Feel free to change the file and include your own implementation instead. + +#ifdef NDEBUG + +// From http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/ +# define dtAssert(x) do { (void)sizeof(x); } while((void)(__LINE__==-1),false) + +#else + +/// An assertion failure function. +// @param[in] expression asserted expression. +// @param[in] file Filename of the failed assertion. +// @param[in] line Line number of the failed assertion. +/// @see dtAssertFailSetCustom +typedef void (dtAssertFailFunc)(const char* expression, const char* file, int line); + +/// Sets the base custom assertion failure function to be used by Detour. +/// @param[in] assertFailFunc The function to be invoked in case of failure of #dtAssert +void dtAssertFailSetCustom(dtAssertFailFunc *assertFailFunc); + +/// Gets the base custom assertion failure function to be used by Detour. +dtAssertFailFunc* dtAssertFailGetCustom(); + +# include +# define dtAssert(expression) \ + { \ + dtAssertFailFunc* failFunc = dtAssertFailGetCustom(); \ + if(failFunc == NULL) { assert(expression); } \ + else if(!(expression)) { (*failFunc)(#expression, __FILE__, __LINE__); } \ + } + +#endif + +#endif // DETOURASSERT_H diff --git a/Pathing/Detour/Include/DetourCommon.h b/Pathing/Detour/Include/DetourCommon.h new file mode 100644 index 0000000000..113e8c3361 --- /dev/null +++ b/Pathing/Detour/Include/DetourCommon.h @@ -0,0 +1,572 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#ifndef DETOURCOMMON_H +#define DETOURCOMMON_H + +#include "DetourMath.h" +#include + +/** +@defgroup detour Detour + +Members in this module are used to create, manipulate, and query navigation +meshes. + +@note This is a summary list of members. Use the index or search +feature to find minor members. +*/ + +/// @name General helper functions +/// @{ + +/// Used to ignore a function parameter. VS complains about unused parameters +/// and this silences the warning. +/// @param [in] _ Unused parameter +template void dtIgnoreUnused(const T&) { } + +/// Swaps the values of the two parameters. +/// @param[in,out] a Value A +/// @param[in,out] b Value B +template inline void dtSwap(T& a, T& b) { T t = a; a = b; b = t; } + +/// Returns the minimum of two values. +/// @param[in] a Value A +/// @param[in] b Value B +/// @return The minimum of the two values. +template inline T dtMin(T a, T b) { return a < b ? a : b; } + +/// Returns the maximum of two values. +/// @param[in] a Value A +/// @param[in] b Value B +/// @return The maximum of the two values. +template inline T dtMax(T a, T b) { return a > b ? a : b; } + +/// Returns the absolute value. +/// @param[in] a The value. +/// @return The absolute value of the specified value. +template inline T dtAbs(T a) { return a < 0 ? -a : a; } + +/// Returns the square of the value. +/// @param[in] a The value. +/// @return The square of the value. +template inline T dtSqr(T a) { return a*a; } + +/// Clamps the value to the specified range. +/// @param[in] v The value to clamp. +/// @param[in] mn The minimum permitted return value. +/// @param[in] mx The maximum permitted return value. +/// @return The value, clamped to the specified range. +template inline T dtClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); } + +/// @} +/// @name Vector helper functions. +/// @{ + +/// Derives the cross product of two vectors. (@p v1 x @p v2) +/// @param[out] dest The cross product. [(x, y, z)] +/// @param[in] v1 A Vector [(x, y, z)] +/// @param[in] v2 A vector [(x, y, z)] +inline void dtVcross(float* dest, const float* v1, const float* v2) +{ + dest[0] = v1[1]*v2[2] - v1[2]*v2[1]; + dest[1] = v1[2]*v2[0] - v1[0]*v2[2]; + dest[2] = v1[0]*v2[1] - v1[1]*v2[0]; +} + +/// Derives the dot product of two vectors. (@p v1 . @p v2) +/// @param[in] v1 A Vector [(x, y, z)] +/// @param[in] v2 A vector [(x, y, z)] +/// @return The dot product. +inline float dtVdot(const float* v1, const float* v2) +{ + return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; +} + +/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s)) +/// @param[out] dest The result vector. [(x, y, z)] +/// @param[in] v1 The base vector. [(x, y, z)] +/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)] +/// @param[in] s The amount to scale @p v2 by before adding to @p v1. +inline void dtVmad(float* dest, const float* v1, const float* v2, const float s) +{ + dest[0] = v1[0]+v2[0]*s; + dest[1] = v1[1]+v2[1]*s; + dest[2] = v1[2]+v2[2]*s; +} + +/// Performs a linear interpolation between two vectors. (@p v1 toward @p v2) +/// @param[out] dest The result vector. [(x, y, x)] +/// @param[in] v1 The starting vector. +/// @param[in] v2 The destination vector. +/// @param[in] t The interpolation factor. [Limits: 0 <= value <= 1.0] +inline void dtVlerp(float* dest, const float* v1, const float* v2, const float t) +{ + dest[0] = v1[0]+(v2[0]-v1[0])*t; + dest[1] = v1[1]+(v2[1]-v1[1])*t; + dest[2] = v1[2]+(v2[2]-v1[2])*t; +} + +/// Performs a vector addition. (@p v1 + @p v2) +/// @param[out] dest The result vector. [(x, y, z)] +/// @param[in] v1 The base vector. [(x, y, z)] +/// @param[in] v2 The vector to add to @p v1. [(x, y, z)] +inline void dtVadd(float* dest, const float* v1, const float* v2) +{ + dest[0] = v1[0]+v2[0]; + dest[1] = v1[1]+v2[1]; + dest[2] = v1[2]+v2[2]; +} + +/// Performs a vector subtraction. (@p v1 - @p v2) +/// @param[out] dest The result vector. [(x, y, z)] +/// @param[in] v1 The base vector. [(x, y, z)] +/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)] +inline void dtVsub(float* dest, const float* v1, const float* v2) +{ + dest[0] = v1[0]-v2[0]; + dest[1] = v1[1]-v2[1]; + dest[2] = v1[2]-v2[2]; +} + +/// Scales the vector by the specified value. (@p v * @p t) +/// @param[out] dest The result vector. [(x, y, z)] +/// @param[in] v The vector to scale. [(x, y, z)] +/// @param[in] t The scaling factor. +inline void dtVscale(float* dest, const float* v, const float t) +{ + dest[0] = v[0]*t; + dest[1] = v[1]*t; + dest[2] = v[2]*t; +} + +/// Selects the minimum value of each element from the specified vectors. +/// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)] +/// @param[in] v A vector. [(x, y, z)] +inline void dtVmin(float* mn, const float* v) +{ + mn[0] = dtMin(mn[0], v[0]); + mn[1] = dtMin(mn[1], v[1]); + mn[2] = dtMin(mn[2], v[2]); +} + +/// Selects the maximum value of each element from the specified vectors. +/// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)] +/// @param[in] v A vector. [(x, y, z)] +inline void dtVmax(float* mx, const float* v) +{ + mx[0] = dtMax(mx[0], v[0]); + mx[1] = dtMax(mx[1], v[1]); + mx[2] = dtMax(mx[2], v[2]); +} + +/// Sets the vector elements to the specified values. +/// @param[out] dest The result vector. [(x, y, z)] +/// @param[in] x The x-value of the vector. +/// @param[in] y The y-value of the vector. +/// @param[in] z The z-value of the vector. +inline void dtVset(float* dest, const float x, const float y, const float z) +{ + dest[0] = x; dest[1] = y; dest[2] = z; +} + +/// Performs a vector copy. +/// @param[out] dest The result. [(x, y, z)] +/// @param[in] a The vector to copy. [(x, y, z)] +inline void dtVcopy(float* dest, const float* a) +{ + dest[0] = a[0]; + dest[1] = a[1]; + dest[2] = a[2]; +} + +/// Derives the scalar length of the vector. +/// @param[in] v The vector. [(x, y, z)] +/// @return The scalar length of the vector. +inline float dtVlen(const float* v) +{ + return dtMathSqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); +} + +/// Derives the square of the scalar length of the vector. (len * len) +/// @param[in] v The vector. [(x, y, z)] +/// @return The square of the scalar length of the vector. +inline float dtVlenSqr(const float* v) +{ + return v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; +} + +/// Returns the distance between two points. +/// @param[in] v1 A point. [(x, y, z)] +/// @param[in] v2 A point. [(x, y, z)] +/// @return The distance between the two points. +inline float dtVdist(const float* v1, const float* v2) +{ + const float dx = v2[0] - v1[0]; + const float dy = v2[1] - v1[1]; + const float dz = v2[2] - v1[2]; + return dtMathSqrtf(dx*dx + dy*dy + dz*dz); +} + +/// Returns the square of the distance between two points. +/// @param[in] v1 A point. [(x, y, z)] +/// @param[in] v2 A point. [(x, y, z)] +/// @return The square of the distance between the two points. +inline float dtVdistSqr(const float* v1, const float* v2) +{ + const float dx = v2[0] - v1[0]; + const float dy = v2[1] - v1[1]; + const float dz = v2[2] - v1[2]; + return dx*dx + dy*dy + dz*dz; +} + +/// Derives the distance between the specified points on the xz-plane. +/// @param[in] v1 A point. [(x, y, z)] +/// @param[in] v2 A point. [(x, y, z)] +/// @return The distance between the point on the xz-plane. +/// +/// The vectors are projected onto the xz-plane, so the y-values are ignored. +inline float dtVdist2D(const float* v1, const float* v2) +{ + const float dx = v2[0] - v1[0]; + const float dz = v2[2] - v1[2]; + return dtMathSqrtf(dx*dx + dz*dz); +} + +/// Derives the square of the distance between the specified points on the xz-plane. +/// @param[in] v1 A point. [(x, y, z)] +/// @param[in] v2 A point. [(x, y, z)] +/// @return The square of the distance between the point on the xz-plane. +inline float dtVdist2DSqr(const float* v1, const float* v2) +{ + const float dx = v2[0] - v1[0]; + const float dz = v2[2] - v1[2]; + return dx*dx + dz*dz; +} + +/// Normalizes the vector. +/// @param[in,out] v The vector to normalize. [(x, y, z)] +inline void dtVnormalize(float* v) +{ + float d = 1.0f / dtMathSqrtf(dtSqr(v[0]) + dtSqr(v[1]) + dtSqr(v[2])); + v[0] *= d; + v[1] *= d; + v[2] *= d; +} + +/// Performs a 'sloppy' colocation check of the specified points. +/// @param[in] p0 A point. [(x, y, z)] +/// @param[in] p1 A point. [(x, y, z)] +/// @return True if the points are considered to be at the same location. +/// +/// Basically, this function will return true if the specified points are +/// close enough to eachother to be considered colocated. +inline bool dtVequal(const float* p0, const float* p1) +{ + static const float thr = dtSqr(1.0f/16384.0f); + const float d = dtVdistSqr(p0, p1); + return d < thr; +} + +/// Checks that the specified vector's components are all finite. +/// @param[in] v A point. [(x, y, z)] +/// @return True if all of the point's components are finite, i.e. not NaN +/// or any of the infinities. +inline bool dtVisfinite(const float* v) +{ + bool result = + dtMathIsfinite(v[0]) && + dtMathIsfinite(v[1]) && + dtMathIsfinite(v[2]); + + return result; +} + +/// Checks that the specified vector's 2D components are finite. +/// @param[in] v A point. [(x, y, z)] +inline bool dtVisfinite2D(const float* v) +{ + bool result = dtMathIsfinite(v[0]) && dtMathIsfinite(v[2]); + return result; +} + +/// Derives the dot product of two vectors on the xz-plane. (@p u . @p v) +/// @param[in] u A vector [(x, y, z)] +/// @param[in] v A vector [(x, y, z)] +/// @return The dot product on the xz-plane. +/// +/// The vectors are projected onto the xz-plane, so the y-values are ignored. +inline float dtVdot2D(const float* u, const float* v) +{ + return u[0]*v[0] + u[2]*v[2]; +} + +/// Derives the xz-plane 2D perp product of the two vectors. (uz*vx - ux*vz) +/// @param[in] u The LHV vector [(x, y, z)] +/// @param[in] v The RHV vector [(x, y, z)] +/// @return The dot product on the xz-plane. +/// +/// The vectors are projected onto the xz-plane, so the y-values are ignored. +inline float dtVperp2D(const float* u, const float* v) +{ + return u[2]*v[0] - u[0]*v[2]; +} + +/// @} +/// @name Computational geometry helper functions. +/// @{ + +/// Derives the signed xz-plane area of the triangle ABC, or the relationship of line AB to point C. +/// @param[in] a Vertex A. [(x, y, z)] +/// @param[in] b Vertex B. [(x, y, z)] +/// @param[in] c Vertex C. [(x, y, z)] +/// @return The signed xz-plane area of the triangle. +inline float dtTriArea2D(const float* a, const float* b, const float* c) +{ + const float abx = b[0] - a[0]; + const float abz = b[2] - a[2]; + const float acx = c[0] - a[0]; + const float acz = c[2] - a[2]; + return acx*abz - abx*acz; +} + +/// Determines if two axis-aligned bounding boxes overlap. +/// @param[in] amin Minimum bounds of box A. [(x, y, z)] +/// @param[in] amax Maximum bounds of box A. [(x, y, z)] +/// @param[in] bmin Minimum bounds of box B. [(x, y, z)] +/// @param[in] bmax Maximum bounds of box B. [(x, y, z)] +/// @return True if the two AABB's overlap. +/// @see dtOverlapBounds +inline bool dtOverlapQuantBounds(const unsigned short amin[3], const unsigned short amax[3], + const unsigned short bmin[3], const unsigned short bmax[3]) +{ + bool overlap = true; + overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap; + overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap; + overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap; + return overlap; +} + +/// Determines if two axis-aligned bounding boxes overlap. +/// @param[in] amin Minimum bounds of box A. [(x, y, z)] +/// @param[in] amax Maximum bounds of box A. [(x, y, z)] +/// @param[in] bmin Minimum bounds of box B. [(x, y, z)] +/// @param[in] bmax Maximum bounds of box B. [(x, y, z)] +/// @return True if the two AABB's overlap. +/// @see dtOverlapQuantBounds +inline bool dtOverlapBounds(const float* amin, const float* amax, + const float* bmin, const float* bmax) +{ + bool overlap = true; + overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap; + overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap; + overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap; + return overlap; +} + +/// Derives the closest point on a triangle from the specified reference point. +/// @param[out] closest The closest point on the triangle. +/// @param[in] p The reference point from which to test. [(x, y, z)] +/// @param[in] a Vertex A of triangle ABC. [(x, y, z)] +/// @param[in] b Vertex B of triangle ABC. [(x, y, z)] +/// @param[in] c Vertex C of triangle ABC. [(x, y, z)] +void dtClosestPtPointTriangle(float* closest, const float* p, + const float* a, const float* b, const float* c); + +/// Derives the y-axis height of the closest point on the triangle from the specified reference point. +/// @param[in] p The reference point from which to test. [(x, y, z)] +/// @param[in] a Vertex A of triangle ABC. [(x, y, z)] +/// @param[in] b Vertex B of triangle ABC. [(x, y, z)] +/// @param[in] c Vertex C of triangle ABC. [(x, y, z)] +/// @param[out] h The resulting height. +bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h); + +bool dtIntersectSegmentPoly2D(const float* p0, const float* p1, + const float* verts, int nverts, + float& tmin, float& tmax, + int& segMin, int& segMax); + +bool dtIntersectSegSeg2D(const float* ap, const float* aq, + const float* bp, const float* bq, + float& s, float& t); + +/// Determines if the specified point is inside the convex polygon on the xz-plane. +/// @param[in] pt The point to check. [(x, y, z)] +/// @param[in] verts The polygon vertices. [(x, y, z) * @p nverts] +/// @param[in] nverts The number of vertices. [Limit: >= 3] +/// @return True if the point is inside the polygon. +bool dtPointInPolygon(const float* pt, const float* verts, const int nverts); + +bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts, + float* ed, float* et); + +float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t); + +/// Derives the centroid of a convex polygon. +/// @param[out] tc The centroid of the polgyon. [(x, y, z)] +/// @param[in] idx The polygon indices. [(vertIndex) * @p nidx] +/// @param[in] nidx The number of indices in the polygon. [Limit: >= 3] +/// @param[in] verts The polygon vertices. [(x, y, z) * vertCount] +void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts); + +/// Determines if the two convex polygons overlap on the xz-plane. +/// @param[in] polya Polygon A vertices. [(x, y, z) * @p npolya] +/// @param[in] npolya The number of vertices in polygon A. +/// @param[in] polyb Polygon B vertices. [(x, y, z) * @p npolyb] +/// @param[in] npolyb The number of vertices in polygon B. +/// @return True if the two polygons overlap. +bool dtOverlapPolyPoly2D(const float* polya, const int npolya, + const float* polyb, const int npolyb); + +/// @} +/// @name Miscellanious functions. +/// @{ + +inline unsigned int dtNextPow2(unsigned int v) +{ + v--; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v++; + return v; +} + +inline unsigned int dtIlog2(unsigned int v) +{ + unsigned int r; + unsigned int shift; + r = (v > 0xffff) << 4; v >>= r; + shift = (v > 0xff) << 3; v >>= shift; r |= shift; + shift = (v > 0xf) << 2; v >>= shift; r |= shift; + shift = (v > 0x3) << 1; v >>= shift; r |= shift; + r |= (v >> 1); + return r; +} + +inline int dtAlign4(int x) { return (x+3) & ~3; } + +inline int dtOppositeTile(int side) { return (side+4) & 0x7; } + +inline void dtSwapByte(unsigned char* a, unsigned char* b) +{ + unsigned char tmp = *a; + *a = *b; + *b = tmp; +} + +inline void dtSwapEndian(unsigned short* v) +{ + unsigned char* x = (unsigned char*)v; + dtSwapByte(x+0, x+1); +} + +inline void dtSwapEndian(short* v) +{ + unsigned char* x = (unsigned char*)v; + dtSwapByte(x+0, x+1); +} + +inline void dtSwapEndian(unsigned int* v) +{ + unsigned char* x = (unsigned char*)v; + dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2); +} + +inline void dtSwapEndian(int* v) +{ + unsigned char* x = (unsigned char*)v; + dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2); +} + +inline void dtSwapEndian(float* v) +{ + unsigned char* x = (unsigned char*)v; + dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2); +} + +void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas, + const float s, const float t, float* out); + +template +TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(const unsigned char*& buffer, const size_t distanceToAdvance) +{ + TypeToRetrieveAs* returnPointer = reinterpret_cast(buffer); + buffer += distanceToAdvance; + return returnPointer; +} + +template +TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(unsigned char*& buffer, const size_t distanceToAdvance) +{ + TypeToRetrieveAs* returnPointer = reinterpret_cast(buffer); + buffer += distanceToAdvance; + return returnPointer; +} + + +/// @} + +#endif // DETOURCOMMON_H + +/////////////////////////////////////////////////////////////////////////// + +// This section contains detailed documentation for members that don't have +// a source file. It reduces clutter in the main section of the header. + +/** + +@fn float dtTriArea2D(const float* a, const float* b, const float* c) +@par + +The vertices are projected onto the xz-plane, so the y-values are ignored. + +This is a low cost function than can be used for various purposes. Its main purpose +is for point/line relationship testing. + +In all cases: A value of zero indicates that all vertices are collinear or represent the same point. +(On the xz-plane.) + +When used for point/line relationship tests, AB usually represents a line against which +the C point is to be tested. In this case: + +A positive value indicates that point C is to the left of line AB, looking from A toward B.
+A negative value indicates that point C is to the right of lineAB, looking from A toward B. + +When used for evaluating a triangle: + +The absolute value of the return value is two times the area of the triangle when it is +projected onto the xz-plane. + +A positive return value indicates: + +
    +
  • The vertices are wrapped in the normal Detour wrap direction.
  • +
  • The triangle's 3D face normal is in the general up direction.
  • +
+ +A negative return value indicates: + +
    +
  • The vertices are reverse wrapped. (Wrapped opposite the normal Detour wrap direction.)
  • +
  • The triangle's 3D face normal is in the general down direction.
  • +
+ +*/ diff --git a/Pathing/Detour/Include/DetourMath.h b/Pathing/Detour/Include/DetourMath.h new file mode 100644 index 0000000000..54af8af095 --- /dev/null +++ b/Pathing/Detour/Include/DetourMath.h @@ -0,0 +1,24 @@ +/** +@defgroup detour Detour + +Members in this module are wrappers around the standard math library +*/ + +#ifndef DETOURMATH_H +#define DETOURMATH_H + +#include +// This include is required because libstdc++ has problems with isfinite +// if cmath is included before math.h. +#include + +inline float dtMathFabsf(float x) { return fabsf(x); } +inline float dtMathSqrtf(float x) { return sqrtf(x); } +inline float dtMathFloorf(float x) { return floorf(x); } +inline float dtMathCeilf(float x) { return ceilf(x); } +inline float dtMathCosf(float x) { return cosf(x); } +inline float dtMathSinf(float x) { return sinf(x); } +inline float dtMathAtan2f(float y, float x) { return atan2f(y, x); } +inline bool dtMathIsfinite(float x) { return std::isfinite(x); } + +#endif diff --git a/Pathing/Detour/Include/DetourNavMesh.h b/Pathing/Detour/Include/DetourNavMesh.h new file mode 100644 index 0000000000..9ac1dc8d6e --- /dev/null +++ b/Pathing/Detour/Include/DetourNavMesh.h @@ -0,0 +1,784 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#ifndef DETOURNAVMESH_H +#define DETOURNAVMESH_H + +#include "DetourAlloc.h" +#include "DetourStatus.h" + +// Undefine (or define in a build cofnig) the following line to use 64bit polyref. +// Generally not needed, useful for very large worlds. +// Note: tiles build using 32bit refs are not compatible with 64bit refs! +//#define DT_POLYREF64 1 + +#ifdef DT_POLYREF64 +// TODO: figure out a multiplatform version of uint64_t +// - maybe: https://code.google.com/p/msinttypes/ +// - or: http://www.azillionmonkeys.com/qed/pstdint.h +#include +#endif + +// Note: If you want to use 64-bit refs, change the types of both dtPolyRef & dtTileRef. +// It is also recommended that you change dtHashRef() to a proper 64-bit hash. + +/// A handle to a polygon within a navigation mesh tile. +/// @ingroup detour +#ifdef DT_POLYREF64 +static const unsigned int DT_SALT_BITS = 16; +static const unsigned int DT_TILE_BITS = 28; +static const unsigned int DT_POLY_BITS = 20; +typedef uint64_t dtPolyRef; +#else +typedef unsigned int dtPolyRef; +#endif + +/// A handle to a tile within a navigation mesh. +/// @ingroup detour +#ifdef DT_POLYREF64 +typedef uint64_t dtTileRef; +#else +typedef unsigned int dtTileRef; +#endif + +/// The maximum number of vertices per navigation polygon. +/// @ingroup detour +static const int DT_VERTS_PER_POLYGON = 6; + +/// @{ +/// @name Tile Serialization Constants +/// These constants are used to detect whether a navigation tile's data +/// and state format is compatible with the current build. +/// + +/// A magic number used to detect compatibility of navigation tile data. +static const int DT_NAVMESH_MAGIC = 'D'<<24 | 'N'<<16 | 'A'<<8 | 'V'; + +/// A version number used to detect compatibility of navigation tile data. +static const int DT_NAVMESH_VERSION = 7; + +/// A magic number used to detect the compatibility of navigation tile states. +static const int DT_NAVMESH_STATE_MAGIC = 'D'<<24 | 'N'<<16 | 'M'<<8 | 'S'; + +/// A version number used to detect compatibility of navigation tile states. +static const int DT_NAVMESH_STATE_VERSION = 1; + +/// @} + +/// A flag that indicates that an entity links to an external entity. +/// (E.g. A polygon edge is a portal that links to another polygon.) +static const unsigned short DT_EXT_LINK = 0x8000; + +/// A value that indicates the entity does not link to anything. +static const unsigned int DT_NULL_LINK = 0xffffffff; + +/// A flag that indicates that an off-mesh connection can be traversed in both directions. (Is bidirectional.) +static const unsigned int DT_OFFMESH_CON_BIDIR = 1; + +/// The maximum number of user defined area ids. +/// @ingroup detour +static const int DT_MAX_AREAS = 64; + +/// Tile flags used for various functions and fields. +/// For an example, see dtNavMesh::addTile(). +enum dtTileFlags +{ + /// The navigation mesh owns the tile memory and is responsible for freeing it. + DT_TILE_FREE_DATA = 0x01, +}; + +/// Vertex flags returned by dtNavMeshQuery::findStraightPath. +enum dtStraightPathFlags +{ + DT_STRAIGHTPATH_START = 0x01, ///< The vertex is the start position in the path. + DT_STRAIGHTPATH_END = 0x02, ///< The vertex is the end position in the path. + DT_STRAIGHTPATH_OFFMESH_CONNECTION = 0x04, ///< The vertex is the start of an off-mesh connection. +}; + +/// Options for dtNavMeshQuery::findStraightPath. +enum dtStraightPathOptions +{ + DT_STRAIGHTPATH_AREA_CROSSINGS = 0x01, ///< Add a vertex at every polygon edge crossing where area changes. + DT_STRAIGHTPATH_ALL_CROSSINGS = 0x02, ///< Add a vertex at every polygon edge crossing. +}; + + +/// Options for dtNavMeshQuery::initSlicedFindPath and updateSlicedFindPath +enum dtFindPathOptions +{ + DT_FINDPATH_ANY_ANGLE = 0x02, ///< use raycasts during pathfind to "shortcut" (raycast still consider costs) +}; + +/// Options for dtNavMeshQuery::raycast +enum dtRaycastOptions +{ + DT_RAYCAST_USE_COSTS = 0x01, ///< Raycast should calculate movement cost along the ray and fill RaycastHit::cost +}; + +enum dtDetailTriEdgeFlags +{ + DT_DETAIL_EDGE_BOUNDARY = 0x01, ///< Detail triangle edge is part of the poly boundary +}; + + +/// Limit raycasting during any angle pahfinding +/// The limit is given as a multiple of the character radius +static const float DT_RAY_CAST_LIMIT_PROPORTIONS = 50.0f; + +/// Flags representing the type of a navigation mesh polygon. +enum dtPolyTypes +{ + /// The polygon is a standard convex polygon that is part of the surface of the mesh. + DT_POLYTYPE_GROUND = 0, + /// The polygon is an off-mesh connection consisting of two vertices. + DT_POLYTYPE_OFFMESH_CONNECTION = 1, +}; + + +/// Defines a polygon within a dtMeshTile object. +/// @ingroup detour +struct dtPoly +{ + /// Index to first link in linked list. (Or #DT_NULL_LINK if there is no link.) + unsigned int firstLink; + + /// The indices of the polygon's vertices. + /// The actual vertices are located in dtMeshTile::verts. + unsigned short verts[DT_VERTS_PER_POLYGON]; + + /// Packed data representing neighbor polygons references and flags for each edge. + unsigned short neis[DT_VERTS_PER_POLYGON]; + + /// The user defined polygon flags. + unsigned short flags; + + /// The number of vertices in the polygon. + unsigned char vertCount; + + /// The bit packed area id and polygon type. + /// @note Use the structure's set and get methods to acess this value. + unsigned char areaAndtype; + + /// Sets the user defined area id. [Limit: < #DT_MAX_AREAS] + inline void setArea(unsigned char a) { areaAndtype = (areaAndtype & 0xc0) | (a & 0x3f); } + + /// Sets the polygon type. (See: #dtPolyTypes.) + inline void setType(unsigned char t) { areaAndtype = (areaAndtype & 0x3f) | (t << 6); } + + /// Gets the user defined area id. + inline unsigned char getArea() const { return areaAndtype & 0x3f; } + + /// Gets the polygon type. (See: #dtPolyTypes) + inline unsigned char getType() const { return areaAndtype >> 6; } +}; + +/// Defines the location of detail sub-mesh data within a dtMeshTile. +struct dtPolyDetail +{ + unsigned int vertBase; ///< The offset of the vertices in the dtMeshTile::detailVerts array. + unsigned int triBase; ///< The offset of the triangles in the dtMeshTile::detailTris array. + unsigned char vertCount; ///< The number of vertices in the sub-mesh. + unsigned char triCount; ///< The number of triangles in the sub-mesh. +}; + +/// Defines a link between polygons. +/// @note This structure is rarely if ever used by the end user. +/// @see dtMeshTile +struct dtLink +{ + dtPolyRef ref; ///< Neighbour reference. (The neighbor that is linked to.) + unsigned int next; ///< Index of the next link. + unsigned char edge; ///< Index of the polygon edge that owns this link. + unsigned char side; ///< If a boundary link, defines on which side the link is. + unsigned char bmin; ///< If a boundary link, defines the minimum sub-edge area. + unsigned char bmax; ///< If a boundary link, defines the maximum sub-edge area. +}; + +/// Bounding volume node. +/// @note This structure is rarely if ever used by the end user. +/// @see dtMeshTile +struct dtBVNode +{ + unsigned short bmin[3]; ///< Minimum bounds of the node's AABB. [(x, y, z)] + unsigned short bmax[3]; ///< Maximum bounds of the node's AABB. [(x, y, z)] + int i; ///< The node's index. (Negative for escape sequence.) +}; + +/// Defines an navigation mesh off-mesh connection within a dtMeshTile object. +/// An off-mesh connection is a user defined traversable connection made up to two vertices. +struct dtOffMeshConnection +{ + /// The endpoints of the connection. [(ax, ay, az, bx, by, bz)] + float pos[6]; + + /// The radius of the endpoints. [Limit: >= 0] + float rad; + + /// The polygon reference of the connection within the tile. + unsigned short poly; + + /// Link flags. + /// @note These are not the connection's user defined flags. Those are assigned via the + /// connection's dtPoly definition. These are link flags used for internal purposes. + unsigned char flags; + + /// End point side. + unsigned char side; + + /// The id of the offmesh connection. (User assigned when the navigation mesh is built.) + unsigned int userId; +}; + +/// Provides high level information related to a dtMeshTile object. +/// @ingroup detour +struct dtMeshHeader +{ + int magic; ///< Tile magic number. (Used to identify the data format.) + int version; ///< Tile data format version number. + int x; ///< The x-position of the tile within the dtNavMesh tile grid. (x, y, layer) + int y; ///< The y-position of the tile within the dtNavMesh tile grid. (x, y, layer) + int layer; ///< The layer of the tile within the dtNavMesh tile grid. (x, y, layer) + unsigned int userId; ///< The user defined id of the tile. + int polyCount; ///< The number of polygons in the tile. + int vertCount; ///< The number of vertices in the tile. + int maxLinkCount; ///< The number of allocated links. + int detailMeshCount; ///< The number of sub-meshes in the detail mesh. + + /// The number of unique vertices in the detail mesh. (In addition to the polygon vertices.) + int detailVertCount; + + int detailTriCount; ///< The number of triangles in the detail mesh. + int bvNodeCount; ///< The number of bounding volume nodes. (Zero if bounding volumes are disabled.) + int offMeshConCount; ///< The number of off-mesh connections. + int offMeshBase; ///< The index of the first polygon which is an off-mesh connection. + float walkableHeight; ///< The height of the agents using the tile. + float walkableRadius; ///< The radius of the agents using the tile. + float walkableClimb; ///< The maximum climb height of the agents using the tile. + float bmin[3]; ///< The minimum bounds of the tile's AABB. [(x, y, z)] + float bmax[3]; ///< The maximum bounds of the tile's AABB. [(x, y, z)] + + /// The bounding volume quantization factor. + float bvQuantFactor; +}; + +/// Defines a navigation mesh tile. +/// @ingroup detour +struct dtMeshTile +{ + unsigned int salt; ///< Counter describing modifications to the tile. + + unsigned int linksFreeList; ///< Index to the next free link. + dtMeshHeader* header; ///< The tile header. + dtPoly* polys; ///< The tile polygons. [Size: dtMeshHeader::polyCount] + float* verts; ///< The tile vertices. [Size: dtMeshHeader::vertCount] + dtLink* links; ///< The tile links. [Size: dtMeshHeader::maxLinkCount] + dtPolyDetail* detailMeshes; ///< The tile's detail sub-meshes. [Size: dtMeshHeader::detailMeshCount] + + /// The detail mesh's unique vertices. [(x, y, z) * dtMeshHeader::detailVertCount] + float* detailVerts; + + /// The detail mesh's triangles. [(vertA, vertB, vertC, triFlags) * dtMeshHeader::detailTriCount]. + /// See dtDetailTriEdgeFlags and dtGetDetailTriEdgeFlags. + unsigned char* detailTris; + + /// The tile bounding volume nodes. [Size: dtMeshHeader::bvNodeCount] + /// (Will be null if bounding volumes are disabled.) + dtBVNode* bvTree; + + dtOffMeshConnection* offMeshCons; ///< The tile off-mesh connections. [Size: dtMeshHeader::offMeshConCount] + + unsigned char* data; ///< The tile data. (Not directly accessed under normal situations.) + int dataSize; ///< Size of the tile data. + int flags; ///< Tile flags. (See: #dtTileFlags) + dtMeshTile* next; ///< The next free tile, or the next tile in the spatial grid. +private: + dtMeshTile(const dtMeshTile&); + dtMeshTile& operator=(const dtMeshTile&); +}; + +/// Get flags for edge in detail triangle. +/// @param triFlags[in] The flags for the triangle (last component of detail vertices above). +/// @param edgeIndex[in] The index of the first vertex of the edge. For instance, if 0, +/// returns flags for edge AB. +inline int dtGetDetailTriEdgeFlags(unsigned char triFlags, int edgeIndex) +{ + return (triFlags >> (edgeIndex * 2)) & 0x3; +} + +/// Configuration parameters used to define multi-tile navigation meshes. +/// The values are used to allocate space during the initialization of a navigation mesh. +/// @see dtNavMesh::init() +/// @ingroup detour +struct dtNavMeshParams +{ + float orig[3]; ///< The world space origin of the navigation mesh's tile space. [(x, y, z)] + float tileWidth; ///< The width of each tile. (Along the x-axis.) + float tileHeight; ///< The height of each tile. (Along the z-axis.) + int maxTiles; ///< The maximum number of tiles the navigation mesh can contain. This and maxPolys are used to calculate how many bits are needed to identify tiles and polygons uniquely. + int maxPolys; ///< The maximum number of polygons each tile can contain. This and maxTiles are used to calculate how many bits are needed to identify tiles and polygons uniquely. +}; + +/// A navigation mesh based on tiles of convex polygons. +/// @ingroup detour +class dtNavMesh +{ +public: + dtNavMesh(); + ~dtNavMesh(); + + /// @{ + /// @name Initialization and Tile Management + + /// Initializes the navigation mesh for tiled use. + /// @param[in] params Initialization parameters. + /// @return The status flags for the operation. + dtStatus init(const dtNavMeshParams* params); + + /// Initializes the navigation mesh for single tile use. + /// @param[in] data Data of the new tile. (See: #dtCreateNavMeshData) + /// @param[in] dataSize The data size of the new tile. + /// @param[in] flags The tile flags. (See: #dtTileFlags) + /// @return The status flags for the operation. + /// @see dtCreateNavMeshData + dtStatus init(unsigned char* data, const int dataSize, const int flags); + + /// The navigation mesh initialization params. + const dtNavMeshParams* getParams() const; + + /// Adds a tile to the navigation mesh. + /// @param[in] data Data for the new tile mesh. (See: #dtCreateNavMeshData) + /// @param[in] dataSize Data size of the new tile mesh. + /// @param[in] flags Tile flags. (See: #dtTileFlags) + /// @param[in] lastRef The desired reference for the tile. (When reloading a tile.) [opt] [Default: 0] + /// @param[out] result The tile reference. (If the tile was succesfully added.) [opt] + /// @return The status flags for the operation. + dtStatus addTile(unsigned char* data, int dataSize, int flags, dtTileRef lastRef, dtTileRef* result); + + /// Removes the specified tile from the navigation mesh. + /// @param[in] ref The reference of the tile to remove. + /// @param[out] data Data associated with deleted tile. + /// @param[out] dataSize Size of the data associated with deleted tile. + /// @return The status flags for the operation. + dtStatus removeTile(dtTileRef ref, unsigned char** data, int* dataSize); + + /// @} + + /// @{ + /// @name Query Functions + + /// Calculates the tile grid location for the specified world position. + /// @param[in] pos The world position for the query. [(x, y, z)] + /// @param[out] tx The tile's x-location. (x, y) + /// @param[out] ty The tile's y-location. (x, y) + void calcTileLoc(const float* pos, int* tx, int* ty) const; + + /// Gets the tile at the specified grid location. + /// @param[in] x The tile's x-location. (x, y, layer) + /// @param[in] y The tile's y-location. (x, y, layer) + /// @param[in] layer The tile's layer. (x, y, layer) + /// @return The tile, or null if the tile does not exist. + const dtMeshTile* getTileAt(const int x, const int y, const int layer) const; + + /// Gets all tiles at the specified grid location. (All layers.) + /// @param[in] x The tile's x-location. (x, y) + /// @param[in] y The tile's y-location. (x, y) + /// @param[out] tiles A pointer to an array of tiles that will hold the result. + /// @param[in] maxTiles The maximum tiles the tiles parameter can hold. + /// @return The number of tiles returned in the tiles array. + int getTilesAt(const int x, const int y, + dtMeshTile const** tiles, const int maxTiles) const; + + /// Gets the tile reference for the tile at specified grid location. + /// @param[in] x The tile's x-location. (x, y, layer) + /// @param[in] y The tile's y-location. (x, y, layer) + /// @param[in] layer The tile's layer. (x, y, layer) + /// @return The tile reference of the tile, or 0 if there is none. + dtTileRef getTileRefAt(int x, int y, int layer) const; + + /// Gets the tile reference for the specified tile. + /// @param[in] tile The tile. + /// @return The tile reference of the tile. + dtTileRef getTileRef(const dtMeshTile* tile) const; + + /// Gets the tile for the specified tile reference. + /// @param[in] ref The tile reference of the tile to retrieve. + /// @return The tile for the specified reference, or null if the + /// reference is invalid. + const dtMeshTile* getTileByRef(dtTileRef ref) const; + + /// The maximum number of tiles supported by the navigation mesh. + /// @return The maximum number of tiles supported by the navigation mesh. + int getMaxTiles() const; + + /// Gets the tile at the specified index. + /// @param[in] i The tile index. [Limit: 0 >= index < #getMaxTiles()] + /// @return The tile at the specified index. + const dtMeshTile* getTile(int i) const; + + /// Gets the tile and polygon for the specified polygon reference. + /// @param[in] ref The reference for the a polygon. + /// @param[out] tile The tile containing the polygon. + /// @param[out] poly The polygon. + /// @return The status flags for the operation. + dtStatus getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const; + + /// Returns the tile and polygon for the specified polygon reference. + /// @param[in] ref A known valid reference for a polygon. + /// @param[out] tile The tile containing the polygon. + /// @param[out] poly The polygon. + void getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const; + + /// Checks the validity of a polygon reference. + /// @param[in] ref The polygon reference to check. + /// @return True if polygon reference is valid for the navigation mesh. + bool isValidPolyRef(dtPolyRef ref) const; + + /// Gets the polygon reference for the tile's base polygon. + /// @param[in] tile The tile. + /// @return The polygon reference for the base polygon in the specified tile. + dtPolyRef getPolyRefBase(const dtMeshTile* tile) const; + + /// Gets the endpoints for an off-mesh connection, ordered by "direction of travel". + /// @param[in] prevRef The reference of the polygon before the connection. + /// @param[in] polyRef The reference of the off-mesh connection polygon. + /// @param[out] startPos The start position of the off-mesh connection. [(x, y, z)] + /// @param[out] endPos The end position of the off-mesh connection. [(x, y, z)] + /// @return The status flags for the operation. + dtStatus getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const; + + /// Gets the specified off-mesh connection. + /// @param[in] ref The polygon reference of the off-mesh connection. + /// @return The specified off-mesh connection, or null if the polygon reference is not valid. + const dtOffMeshConnection* getOffMeshConnectionByRef(dtPolyRef ref) const; + + /// @} + + /// @{ + /// @name State Management + /// These functions do not effect #dtTileRef or #dtPolyRef's. + + /// Sets the user defined flags for the specified polygon. + /// @param[in] ref The polygon reference. + /// @param[in] flags The new flags for the polygon. + /// @return The status flags for the operation. + dtStatus setPolyFlags(dtPolyRef ref, unsigned short flags); + + /// Gets the user defined flags for the specified polygon. + /// @param[in] ref The polygon reference. + /// @param[out] resultFlags The polygon flags. + /// @return The status flags for the operation. + dtStatus getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const; + + /// Sets the user defined area for the specified polygon. + /// @param[in] ref The polygon reference. + /// @param[in] area The new area id for the polygon. [Limit: < #DT_MAX_AREAS] + /// @return The status flags for the operation. + dtStatus setPolyArea(dtPolyRef ref, unsigned char area); + + /// Gets the user defined area for the specified polygon. + /// @param[in] ref The polygon reference. + /// @param[out] resultArea The area id for the polygon. + /// @return The status flags for the operation. + dtStatus getPolyArea(dtPolyRef ref, unsigned char* resultArea) const; + + /// Gets the size of the buffer required by #storeTileState to store the specified tile's state. + /// @param[in] tile The tile. + /// @return The size of the buffer required to store the state. + int getTileStateSize(const dtMeshTile* tile) const; + + /// Stores the non-structural state of the tile in the specified buffer. (Flags, area ids, etc.) + /// @param[in] tile The tile. + /// @param[out] data The buffer to store the tile's state in. + /// @param[in] maxDataSize The size of the data buffer. [Limit: >= #getTileStateSize] + /// @return The status flags for the operation. + dtStatus storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const; + + /// Restores the state of the tile. + /// @param[in] tile The tile. + /// @param[in] data The new state. (Obtained from #storeTileState.) + /// @param[in] maxDataSize The size of the state within the data buffer. + /// @return The status flags for the operation. + dtStatus restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize); + + /// @} + + /// @{ + /// @name Encoding and Decoding + /// These functions are generally meant for internal use only. + + /// Derives a standard polygon reference. + /// @note This function is generally meant for internal use only. + /// @param[in] salt The tile's salt value. + /// @param[in] it The index of the tile. + /// @param[in] ip The index of the polygon within the tile. + inline dtPolyRef encodePolyId(unsigned int salt, unsigned int it, unsigned int ip) const + { +#ifdef DT_POLYREF64 + return ((dtPolyRef)salt << (DT_POLY_BITS+DT_TILE_BITS)) | ((dtPolyRef)it << DT_POLY_BITS) | (dtPolyRef)ip; +#else + return ((dtPolyRef)salt << (m_polyBits+m_tileBits)) | ((dtPolyRef)it << m_polyBits) | (dtPolyRef)ip; +#endif + } + + /// Decodes a standard polygon reference. + /// @note This function is generally meant for internal use only. + /// @param[in] ref The polygon reference to decode. + /// @param[out] salt The tile's salt value. + /// @param[out] it The index of the tile. + /// @param[out] ip The index of the polygon within the tile. + /// @see #encodePolyId + inline void decodePolyId(dtPolyRef ref, unsigned int& salt, unsigned int& it, unsigned int& ip) const + { +#ifdef DT_POLYREF64 + const dtPolyRef saltMask = ((dtPolyRef)1<> (DT_POLY_BITS+DT_TILE_BITS)) & saltMask); + it = (unsigned int)((ref >> DT_POLY_BITS) & tileMask); + ip = (unsigned int)(ref & polyMask); +#else + const dtPolyRef saltMask = ((dtPolyRef)1<> (m_polyBits+m_tileBits)) & saltMask); + it = (unsigned int)((ref >> m_polyBits) & tileMask); + ip = (unsigned int)(ref & polyMask); +#endif + } + + /// Extracts a tile's salt value from the specified polygon reference. + /// @note This function is generally meant for internal use only. + /// @param[in] ref The polygon reference. + /// @see #encodePolyId + inline unsigned int decodePolyIdSalt(dtPolyRef ref) const + { +#ifdef DT_POLYREF64 + const dtPolyRef saltMask = ((dtPolyRef)1<> (DT_POLY_BITS+DT_TILE_BITS)) & saltMask); +#else + const dtPolyRef saltMask = ((dtPolyRef)1<> (m_polyBits+m_tileBits)) & saltMask); +#endif + } + + /// Extracts the tile's index from the specified polygon reference. + /// @note This function is generally meant for internal use only. + /// @param[in] ref The polygon reference. + /// @see #encodePolyId + inline unsigned int decodePolyIdTile(dtPolyRef ref) const + { +#ifdef DT_POLYREF64 + const dtPolyRef tileMask = ((dtPolyRef)1<> DT_POLY_BITS) & tileMask); +#else + const dtPolyRef tileMask = ((dtPolyRef)1<> m_polyBits) & tileMask); +#endif + } + + /// Extracts the polygon's index (within its tile) from the specified polygon reference. + /// @note This function is generally meant for internal use only. + /// @param[in] ref The polygon reference. + /// @see #encodePolyId + inline unsigned int decodePolyIdPoly(dtPolyRef ref) const + { +#ifdef DT_POLYREF64 + const dtPolyRef polyMask = ((dtPolyRef)1<header->bvQuantFactor; +const dtBVNode* n = &tile->bvTree[i]; +if (n->i >= 0) +{ + // This is a leaf node. + float worldMinX = tile->header->bmin[0] + n->bmin[0]*cs; + float worldMinY = tile->header->bmin[0] + n->bmin[1]*cs; + // Etc... +} +@endcode + +@struct dtMeshTile +@par + +Tiles generally only exist within the context of a dtNavMesh object. + +Some tile content is optional. For example, a tile may not contain any +off-mesh connections. In this case the associated pointer will be null. + +If a detail mesh exists it will share vertices with the base polygon mesh. +Only the vertices unique to the detail mesh will be stored in #detailVerts. + +@warning Tiles returned by a dtNavMesh object are not guarenteed to be populated. +For example: The tile at a location might not have been loaded yet, or may have been removed. +In this case, pointers will be null. So if in doubt, check the polygon count in the +tile's header to determine if a tile has polygons defined. + +@var float dtOffMeshConnection::pos[6] +@par + +For a properly built navigation mesh, vertex A will always be within the bounds of the mesh. +Vertex B is not required to be within the bounds of the mesh. + +*/ diff --git a/Pathing/Detour/Include/DetourNavMeshBuilder.h b/Pathing/Detour/Include/DetourNavMeshBuilder.h new file mode 100644 index 0000000000..9425a7a789 --- /dev/null +++ b/Pathing/Detour/Include/DetourNavMeshBuilder.h @@ -0,0 +1,149 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#ifndef DETOURNAVMESHBUILDER_H +#define DETOURNAVMESHBUILDER_H + +#include "DetourAlloc.h" + +/// Represents the source data used to build an navigation mesh tile. +/// @ingroup detour +struct dtNavMeshCreateParams +{ + + /// @name Polygon Mesh Attributes + /// Used to create the base navigation graph. + /// See #rcPolyMesh for details related to these attributes. + /// @{ + + const unsigned short* verts; ///< The polygon mesh vertices. [(x, y, z) * #vertCount] [Unit: vx] + int vertCount; ///< The number vertices in the polygon mesh. [Limit: >= 3] + const unsigned short* polys; ///< The polygon data. [Size: #polyCount * 2 * #nvp] + const unsigned short* polyFlags; ///< The user defined flags assigned to each polygon. [Size: #polyCount] + const unsigned char* polyAreas; ///< The user defined area ids assigned to each polygon. [Size: #polyCount] + int polyCount; ///< Number of polygons in the mesh. [Limit: >= 1] + int nvp; ///< Number maximum number of vertices per polygon. [Limit: >= 3] + + /// @} + /// @name Height Detail Attributes (Optional) + /// See #rcPolyMeshDetail for details related to these attributes. + /// @{ + + const unsigned int* detailMeshes; ///< The height detail sub-mesh data. [Size: 4 * #polyCount] + const float* detailVerts; ///< The detail mesh vertices. [Size: 3 * #detailVertsCount] [Unit: wu] + int detailVertsCount; ///< The number of vertices in the detail mesh. + const unsigned char* detailTris; ///< The detail mesh triangles. [Size: 4 * #detailTriCount] + int detailTriCount; ///< The number of triangles in the detail mesh. + + /// @} + /// @name Off-Mesh Connections Attributes (Optional) + /// Used to define a custom point-to-point edge within the navigation graph, an + /// off-mesh connection is a user defined traversable connection made up to two vertices, + /// at least one of which resides within a navigation mesh polygon. + /// @{ + + /// Off-mesh connection vertices. [(ax, ay, az, bx, by, bz) * #offMeshConCount] [Unit: wu] + const float* offMeshConVerts; + /// Off-mesh connection radii. [Size: #offMeshConCount] [Unit: wu] + const float* offMeshConRad; + /// User defined flags assigned to the off-mesh connections. [Size: #offMeshConCount] + const unsigned short* offMeshConFlags; + /// User defined area ids assigned to the off-mesh connections. [Size: #offMeshConCount] + const unsigned char* offMeshConAreas; + /// The permitted travel direction of the off-mesh connections. [Size: #offMeshConCount] + /// + /// 0 = Travel only from endpoint A to endpoint B.
+ /// #DT_OFFMESH_CON_BIDIR = Bidirectional travel. + const unsigned char* offMeshConDir; + /// The user defined ids of the off-mesh connection. [Size: #offMeshConCount] + const unsigned int* offMeshConUserID; + /// The number of off-mesh connections. [Limit: >= 0] + int offMeshConCount; + + /// @} + /// @name Tile Attributes + /// @note The tile grid/layer data can be left at zero if the destination is a single tile mesh. + /// @{ + + unsigned int userId; ///< The user defined id of the tile. + int tileX; ///< The tile's x-grid location within the multi-tile destination mesh. (Along the x-axis.) + int tileY; ///< The tile's y-grid location within the multi-tile desitation mesh. (Along the z-axis.) + int tileLayer; ///< The tile's layer within the layered destination mesh. [Limit: >= 0] (Along the y-axis.) + float bmin[3]; ///< The minimum bounds of the tile. [(x, y, z)] [Unit: wu] + float bmax[3]; ///< The maximum bounds of the tile. [(x, y, z)] [Unit: wu] + + /// @} + /// @name General Configuration Attributes + /// @{ + + float walkableHeight; ///< The agent height. [Unit: wu] + float walkableRadius; ///< The agent radius. [Unit: wu] + float walkableClimb; ///< The agent maximum traversable ledge. (Up/Down) [Unit: wu] + float cs; ///< The xz-plane cell size of the polygon mesh. [Limit: > 0] [Unit: wu] + float ch; ///< The y-axis cell height of the polygon mesh. [Limit: > 0] [Unit: wu] + + /// True if a bounding volume tree should be built for the tile. + /// @note The BVTree is not normally needed for layered navigation meshes. + bool buildBvTree; + + /// @} +}; + +/// Builds navigation mesh tile data from the provided tile creation data. +/// @ingroup detour +/// @param[in] params Tile creation data. +/// @param[out] outData The resulting tile data. +/// @param[out] outDataSize The size of the tile data array. +/// @return True if the tile data was successfully created. +bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize); + +/// Swaps the endianess of the tile data's header (#dtMeshHeader). +/// @param[in,out] data The tile data array. +/// @param[in] dataSize The size of the data array. +bool dtNavMeshHeaderSwapEndian(unsigned char* data, const int dataSize); + +/// Swaps endianess of the tile data. +/// @param[in,out] data The tile data array. +/// @param[in] dataSize The size of the data array. +bool dtNavMeshDataSwapEndian(unsigned char* data, const int dataSize); + +#endif // DETOURNAVMESHBUILDER_H + +// This section contains detailed documentation for members that don't have +// a source file. It reduces clutter in the main section of the header. + +/** + +@struct dtNavMeshCreateParams +@par + +This structure is used to marshal data between the Recast mesh generation pipeline and Detour navigation components. + +See the rcPolyMesh and rcPolyMeshDetail documentation for detailed information related to mesh structure. + +Units are usually in voxels (vx) or world units (wu). The units for voxels, grid size, and cell size +are all based on the values of #cs and #ch. + +The standard navigation mesh build process is to create tile data using dtCreateNavMeshData, then add the tile +to a navigation mesh using either the dtNavMesh single tile init() function or the dtNavMesh::addTile() +function. + +@see dtCreateNavMeshData + +*/ + diff --git a/Pathing/Detour/Include/DetourNavMeshQuery.h b/Pathing/Detour/Include/DetourNavMeshQuery.h new file mode 100644 index 0000000000..08b70a8f59 --- /dev/null +++ b/Pathing/Detour/Include/DetourNavMeshQuery.h @@ -0,0 +1,589 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#ifndef DETOURNAVMESHQUERY_H +#define DETOURNAVMESHQUERY_H + +#include "DetourNavMesh.h" +#include "DetourStatus.h" + + +// Define DT_VIRTUAL_QUERYFILTER if you wish to derive a custom filter from dtQueryFilter. +// On certain platforms indirect or virtual function call is expensive. The default +// setting is to use non-virtual functions, the actual implementations of the functions +// are declared as inline for maximum speed. + +//#define DT_VIRTUAL_QUERYFILTER 1 + +/// Defines polygon filtering and traversal costs for navigation mesh query operations. +/// @ingroup detour +class dtQueryFilter +{ + float m_areaCost[DT_MAX_AREAS]; ///< Cost per area type. (Used by default implementation.) + unsigned short m_includeFlags; ///< Flags for polygons that can be visited. (Used by default implementation.) + unsigned short m_excludeFlags; ///< Flags for polygons that should not be visted. (Used by default implementation.) + +public: + dtQueryFilter(); + +#ifdef DT_VIRTUAL_QUERYFILTER + virtual ~dtQueryFilter() { } +#endif + + /// Returns true if the polygon can be visited. (I.e. Is traversable.) + /// @param[in] ref The reference id of the polygon test. + /// @param[in] tile The tile containing the polygon. + /// @param[in] poly The polygon to test. +#ifdef DT_VIRTUAL_QUERYFILTER + virtual bool passFilter(const dtPolyRef ref, + const dtMeshTile* tile, + const dtPoly* poly) const; +#else + bool passFilter(const dtPolyRef ref, + const dtMeshTile* tile, + const dtPoly* poly) const; +#endif + + /// Returns cost to move from the beginning to the end of a line segment + /// that is fully contained within a polygon. + /// @param[in] pa The start position on the edge of the previous and current polygon. [(x, y, z)] + /// @param[in] pb The end position on the edge of the current and next polygon. [(x, y, z)] + /// @param[in] prevRef The reference id of the previous polygon. [opt] + /// @param[in] prevTile The tile containing the previous polygon. [opt] + /// @param[in] prevPoly The previous polygon. [opt] + /// @param[in] curRef The reference id of the current polygon. + /// @param[in] curTile The tile containing the current polygon. + /// @param[in] curPoly The current polygon. + /// @param[in] nextRef The refernece id of the next polygon. [opt] + /// @param[in] nextTile The tile containing the next polygon. [opt] + /// @param[in] nextPoly The next polygon. [opt] +#ifdef DT_VIRTUAL_QUERYFILTER + virtual float getCost(const float* pa, const float* pb, + const dtPolyRef prevRef, const dtMeshTile* prevTile, const dtPoly* prevPoly, + const dtPolyRef curRef, const dtMeshTile* curTile, const dtPoly* curPoly, + const dtPolyRef nextRef, const dtMeshTile* nextTile, const dtPoly* nextPoly) const; +#else + float getCost(const float* pa, const float* pb, + const dtPolyRef prevRef, const dtMeshTile* prevTile, const dtPoly* prevPoly, + const dtPolyRef curRef, const dtMeshTile* curTile, const dtPoly* curPoly, + const dtPolyRef nextRef, const dtMeshTile* nextTile, const dtPoly* nextPoly) const; +#endif + + /// @name Getters and setters for the default implementation data. + ///@{ + + /// Returns the traversal cost of the area. + /// @param[in] i The id of the area. + /// @returns The traversal cost of the area. + inline float getAreaCost(const int i) const { return m_areaCost[i]; } + + /// Sets the traversal cost of the area. + /// @param[in] i The id of the area. + /// @param[in] cost The new cost of traversing the area. + inline void setAreaCost(const int i, const float cost) { m_areaCost[i] = cost; } + + /// Returns the include flags for the filter. + /// Any polygons that include one or more of these flags will be + /// included in the operation. + inline unsigned short getIncludeFlags() const { return m_includeFlags; } + + /// Sets the include flags for the filter. + /// @param[in] flags The new flags. + inline void setIncludeFlags(const unsigned short flags) { m_includeFlags = flags; } + + /// Returns the exclude flags for the filter. + /// Any polygons that include one ore more of these flags will be + /// excluded from the operation. + inline unsigned short getExcludeFlags() const { return m_excludeFlags; } + + /// Sets the exclude flags for the filter. + /// @param[in] flags The new flags. + inline void setExcludeFlags(const unsigned short flags) { m_excludeFlags = flags; } + + ///@} + +}; + +/// Provides information about raycast hit +/// filled by dtNavMeshQuery::raycast +/// @ingroup detour +struct dtRaycastHit +{ + /// The hit parameter. (FLT_MAX if no wall hit.) + float t; + + /// hitNormal The normal of the nearest wall hit. [(x, y, z)] + float hitNormal[3]; + + /// The index of the edge on the final polygon where the wall was hit. + int hitEdgeIndex; + + /// Pointer to an array of reference ids of the visited polygons. [opt] + dtPolyRef* path; + + /// The number of visited polygons. [opt] + int pathCount; + + /// The maximum number of polygons the @p path array can hold. + int maxPath; + + /// The cost of the path until hit. + float pathCost; +}; + +/// Provides custom polygon query behavior. +/// Used by dtNavMeshQuery::queryPolygons. +/// @ingroup detour +class dtPolyQuery +{ +public: + virtual ~dtPolyQuery() { } + + /// Called for each batch of unique polygons touched by the search area in dtNavMeshQuery::queryPolygons. + /// This can be called multiple times for a single query. + virtual void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count) = 0; +}; + +/// Provides the ability to perform pathfinding related queries against +/// a navigation mesh. +/// @ingroup detour +class dtNavMeshQuery +{ +public: + dtNavMeshQuery(); + ~dtNavMeshQuery(); + + /// Initializes the query object. + /// @param[in] nav Pointer to the dtNavMesh object to use for all queries. + /// @param[in] maxNodes Maximum number of search nodes. [Limits: 0 < value <= 65535] + /// @returns The status flags for the query. + dtStatus init(const dtNavMesh* nav, const int maxNodes); + + /// @name Standard Pathfinding Functions + // /@{ + + /// Finds a path from the start polygon to the end polygon. + /// @param[in] startRef The refrence id of the start polygon. + /// @param[in] endRef The reference id of the end polygon. + /// @param[in] startPos A position within the start polygon. [(x, y, z)] + /// @param[in] endPos A position within the end polygon. [(x, y, z)] + /// @param[in] filter The polygon filter to apply to the query. + /// @param[out] path An ordered list of polygon references representing the path. (Start to end.) + /// [(polyRef) * @p pathCount] + /// @param[out] pathCount The number of polygons returned in the @p path array. + /// @param[in] maxPath The maximum number of polygons the @p path array can hold. [Limit: >= 1] + dtStatus findPath(dtPolyRef startRef, dtPolyRef endRef, + const float* startPos, const float* endPos, + const dtQueryFilter* filter, + dtPolyRef* path, int* pathCount, const int maxPath) const; + + /// Finds the straight path from the start to the end position within the polygon corridor. + /// @param[in] startPos Path start position. [(x, y, z)] + /// @param[in] endPos Path end position. [(x, y, z)] + /// @param[in] path An array of polygon references that represent the path corridor. + /// @param[in] pathSize The number of polygons in the @p path array. + /// @param[out] straightPath Points describing the straight path. [(x, y, z) * @p straightPathCount]. + /// @param[out] straightPathFlags Flags describing each point. (See: #dtStraightPathFlags) [opt] + /// @param[out] straightPathRefs The reference id of the polygon that is being entered at each point. [opt] + /// @param[out] straightPathCount The number of points in the straight path. + /// @param[in] maxStraightPath The maximum number of points the straight path arrays can hold. [Limit: > 0] + /// @param[in] options Query options. (see: #dtStraightPathOptions) + /// @returns The status flags for the query. + dtStatus findStraightPath(const float* startPos, const float* endPos, + const dtPolyRef* path, const int pathSize, + float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, + int* straightPathCount, const int maxStraightPath, const int options = 0) const; + + ///@} + /// @name Sliced Pathfinding Functions + /// Common use case: + /// -# Call initSlicedFindPath() to initialize the sliced path query. + /// -# Call updateSlicedFindPath() until it returns complete. + /// -# Call finalizeSlicedFindPath() to get the path. + ///@{ + + /// Intializes a sliced path query. + /// @param[in] startRef The refrence id of the start polygon. + /// @param[in] endRef The reference id of the end polygon. + /// @param[in] startPos A position within the start polygon. [(x, y, z)] + /// @param[in] endPos A position within the end polygon. [(x, y, z)] + /// @param[in] filter The polygon filter to apply to the query. + /// @param[in] options query options (see: #dtFindPathOptions) + /// @returns The status flags for the query. + dtStatus initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef, + const float* startPos, const float* endPos, + const dtQueryFilter* filter, const unsigned int options = 0); + + /// Updates an in-progress sliced path query. + /// @param[in] maxIter The maximum number of iterations to perform. + /// @param[out] doneIters The actual number of iterations completed. [opt] + /// @returns The status flags for the query. + dtStatus updateSlicedFindPath(const int maxIter, int* doneIters); + + /// Finalizes and returns the results of a sliced path query. + /// @param[out] path An ordered list of polygon references representing the path. (Start to end.) + /// [(polyRef) * @p pathCount] + /// @param[out] pathCount The number of polygons returned in the @p path array. + /// @param[in] maxPath The max number of polygons the path array can hold. [Limit: >= 1] + /// @returns The status flags for the query. + dtStatus finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, const int maxPath); + + /// Finalizes and returns the results of an incomplete sliced path query, returning the path to the furthest + /// polygon on the existing path that was visited during the search. + /// @param[in] existing An array of polygon references for the existing path. + /// @param[in] existingSize The number of polygon in the @p existing array. + /// @param[out] path An ordered list of polygon references representing the path. (Start to end.) + /// [(polyRef) * @p pathCount] + /// @param[out] pathCount The number of polygons returned in the @p path array. + /// @param[in] maxPath The max number of polygons the @p path array can hold. [Limit: >= 1] + /// @returns The status flags for the query. + dtStatus finalizeSlicedFindPathPartial(const dtPolyRef* existing, const int existingSize, + dtPolyRef* path, int* pathCount, const int maxPath); + + ///@} + /// @name Dijkstra Search Functions + /// @{ + + /// Finds the polygons along the navigation graph that touch the specified circle. + /// @param[in] startRef The reference id of the polygon where the search starts. + /// @param[in] centerPos The center of the search circle. [(x, y, z)] + /// @param[in] radius The radius of the search circle. + /// @param[in] filter The polygon filter to apply to the query. + /// @param[out] resultRef The reference ids of the polygons touched by the circle. [opt] + /// @param[out] resultParent The reference ids of the parent polygons for each result. + /// Zero if a result polygon has no parent. [opt] + /// @param[out] resultCost The search cost from @p centerPos to the polygon. [opt] + /// @param[out] resultCount The number of polygons found. [opt] + /// @param[in] maxResult The maximum number of polygons the result arrays can hold. + /// @returns The status flags for the query. + dtStatus findPolysAroundCircle(dtPolyRef startRef, const float* centerPos, const float radius, + const dtQueryFilter* filter, + dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost, + int* resultCount, const int maxResult) const; + + /// Finds the polygons along the naviation graph that touch the specified convex polygon. + /// @param[in] startRef The reference id of the polygon where the search starts. + /// @param[in] verts The vertices describing the convex polygon. (CCW) + /// [(x, y, z) * @p nverts] + /// @param[in] nverts The number of vertices in the polygon. + /// @param[in] filter The polygon filter to apply to the query. + /// @param[out] resultRef The reference ids of the polygons touched by the search polygon. [opt] + /// @param[out] resultParent The reference ids of the parent polygons for each result. Zero if a + /// result polygon has no parent. [opt] + /// @param[out] resultCost The search cost from the centroid point to the polygon. [opt] + /// @param[out] resultCount The number of polygons found. + /// @param[in] maxResult The maximum number of polygons the result arrays can hold. + /// @returns The status flags for the query. + dtStatus findPolysAroundShape(dtPolyRef startRef, const float* verts, const int nverts, + const dtQueryFilter* filter, + dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost, + int* resultCount, const int maxResult) const; + + /// Gets a path from the explored nodes in the previous search. + /// @param[in] endRef The reference id of the end polygon. + /// @param[out] path An ordered list of polygon references representing the path. (Start to end.) + /// [(polyRef) * @p pathCount] + /// @param[out] pathCount The number of polygons returned in the @p path array. + /// @param[in] maxPath The maximum number of polygons the @p path array can hold. [Limit: >= 0] + /// @returns The status flags. Returns DT_FAILURE | DT_INVALID_PARAM if any parameter is wrong, or if + /// @p endRef was not explored in the previous search. Returns DT_SUCCESS | DT_BUFFER_TOO_SMALL + /// if @p path cannot contain the entire path. In this case it is filled to capacity with a partial path. + /// Otherwise returns DT_SUCCESS. + /// @remarks The result of this function depends on the state of the query object. For that reason it should only + /// be used immediately after one of the two Dijkstra searches, findPolysAroundCircle or findPolysAroundShape. + dtStatus getPathFromDijkstraSearch(dtPolyRef endRef, dtPolyRef* path, int* pathCount, int maxPath) const; + + /// @} + /// @name Local Query Functions + ///@{ + + /// Finds the polygon nearest to the specified center point. + /// [opt] means the specified parameter can be a null pointer, in that case the output parameter will not be set. + /// + /// @param[in] center The center of the search box. [(x, y, z)] + /// @param[in] halfExtents The search distance along each axis. [(x, y, z)] + /// @param[in] filter The polygon filter to apply to the query. + /// @param[out] nearestRef The reference id of the nearest polygon. Will be set to 0 if no polygon is found. + /// @param[out] nearestPt The nearest point on the polygon. Unchanged if no polygon is found. [opt] [(x, y, z)] + /// @returns The status flags for the query. + dtStatus findNearestPoly(const float* center, const float* halfExtents, + const dtQueryFilter* filter, + dtPolyRef* nearestRef, float* nearestPt) const; + + /// Finds the polygon nearest to the specified center point. + /// [opt] means the specified parameter can be a null pointer, in that case the output parameter will not be set. + /// + /// @param[in] center The center of the search box. [(x, y, z)] + /// @param[in] halfExtents The search distance along each axis. [(x, y, z)] + /// @param[in] filter The polygon filter to apply to the query. + /// @param[out] nearestRef The reference id of the nearest polygon. Will be set to 0 if no polygon is found. + /// @param[out] nearestPt The nearest point on the polygon. Unchanged if no polygon is found. [opt] [(x, y, z)] + /// @param[out] isOverPoly Set to true if the point's X/Z coordinate lies inside the polygon, false otherwise. Unchanged if no polygon is found. [opt] + /// @returns The status flags for the query. + dtStatus findNearestPoly(const float* center, const float* halfExtents, + const dtQueryFilter* filter, + dtPolyRef* nearestRef, float* nearestPt, bool* isOverPoly) const; + + /// Finds polygons that overlap the search box. + /// @param[in] center The center of the search box. [(x, y, z)] + /// @param[in] halfExtents The search distance along each axis. [(x, y, z)] + /// @param[in] filter The polygon filter to apply to the query. + /// @param[out] polys The reference ids of the polygons that overlap the query box. + /// @param[out] polyCount The number of polygons in the search result. + /// @param[in] maxPolys The maximum number of polygons the search result can hold. + /// @returns The status flags for the query. + dtStatus queryPolygons(const float* center, const float* halfExtents, + const dtQueryFilter* filter, + dtPolyRef* polys, int* polyCount, const int maxPolys) const; + + /// Finds polygons that overlap the search box. + /// @param[in] center The center of the search box. [(x, y, z)] + /// @param[in] halfExtents The search distance along each axis. [(x, y, z)] + /// @param[in] filter The polygon filter to apply to the query. + /// @param[in] query The query. Polygons found will be batched together and passed to this query. + dtStatus queryPolygons(const float* center, const float* halfExtents, + const dtQueryFilter* filter, dtPolyQuery* query) const; + + /// Finds the non-overlapping navigation polygons in the local neighbourhood around the center position. + /// @param[in] startRef The reference id of the polygon where the search starts. + /// @param[in] centerPos The center of the query circle. [(x, y, z)] + /// @param[in] radius The radius of the query circle. + /// @param[in] filter The polygon filter to apply to the query. + /// @param[out] resultRef The reference ids of the polygons touched by the circle. + /// @param[out] resultParent The reference ids of the parent polygons for each result. + /// Zero if a result polygon has no parent. [opt] + /// @param[out] resultCount The number of polygons found. + /// @param[in] maxResult The maximum number of polygons the result arrays can hold. + /// @returns The status flags for the query. + dtStatus findLocalNeighbourhood(dtPolyRef startRef, const float* centerPos, const float radius, + const dtQueryFilter* filter, + dtPolyRef* resultRef, dtPolyRef* resultParent, + int* resultCount, const int maxResult) const; + + /// Moves from the start to the end position constrained to the navigation mesh. + /// @param[in] startRef The reference id of the start polygon. + /// @param[in] startPos A position of the mover within the start polygon. [(x, y, x)] + /// @param[in] endPos The desired end position of the mover. [(x, y, z)] + /// @param[in] filter The polygon filter to apply to the query. + /// @param[out] resultPos The result position of the mover. [(x, y, z)] + /// @param[out] visited The reference ids of the polygons visited during the move. + /// @param[out] visitedCount The number of polygons visited during the move. + /// @param[in] maxVisitedSize The maximum number of polygons the @p visited array can hold. + /// @returns The status flags for the query. + dtStatus moveAlongSurface(dtPolyRef startRef, const float* startPos, const float* endPos, + const dtQueryFilter* filter, + float* resultPos, dtPolyRef* visited, int* visitedCount, const int maxVisitedSize) const; + + /// Casts a 'walkability' ray along the surface of the navigation mesh from + /// the start position toward the end position. + /// @note A wrapper around raycast(..., RaycastHit*). Retained for backward compatibility. + /// @param[in] startRef The reference id of the start polygon. + /// @param[in] startPos A position within the start polygon representing + /// the start of the ray. [(x, y, z)] + /// @param[in] endPos The position to cast the ray toward. [(x, y, z)] + /// @param[out] t The hit parameter. (FLT_MAX if no wall hit.) + /// @param[out] hitNormal The normal of the nearest wall hit. [(x, y, z)] + /// @param[in] filter The polygon filter to apply to the query. + /// @param[out] path The reference ids of the visited polygons. [opt] + /// @param[out] pathCount The number of visited polygons. [opt] + /// @param[in] maxPath The maximum number of polygons the @p path array can hold. + /// @returns The status flags for the query. + dtStatus raycast(dtPolyRef startRef, const float* startPos, const float* endPos, + const dtQueryFilter* filter, + float* t, float* hitNormal, dtPolyRef* path, int* pathCount, const int maxPath) const; + + /// Casts a 'walkability' ray along the surface of the navigation mesh from + /// the start position toward the end position. + /// @param[in] startRef The reference id of the start polygon. + /// @param[in] startPos A position within the start polygon representing + /// the start of the ray. [(x, y, z)] + /// @param[in] endPos The position to cast the ray toward. [(x, y, z)] + /// @param[in] filter The polygon filter to apply to the query. + /// @param[in] flags govern how the raycast behaves. See dtRaycastOptions + /// @param[out] hit Pointer to a raycast hit structure which will be filled by the results. + /// @param[in] prevRef parent of start ref. Used during for cost calculation [opt] + /// @returns The status flags for the query. + dtStatus raycast(dtPolyRef startRef, const float* startPos, const float* endPos, + const dtQueryFilter* filter, const unsigned int options, + dtRaycastHit* hit, dtPolyRef prevRef = 0) const; + + + /// Finds the distance from the specified position to the nearest polygon wall. + /// @param[in] startRef The reference id of the polygon containing @p centerPos. + /// @param[in] centerPos The center of the search circle. [(x, y, z)] + /// @param[in] maxRadius The radius of the search circle. + /// @param[in] filter The polygon filter to apply to the query. + /// @param[out] hitDist The distance to the nearest wall from @p centerPos. + /// @param[out] hitPos The nearest position on the wall that was hit. [(x, y, z)] + /// @param[out] hitNormal The normalized ray formed from the wall point to the + /// source point. [(x, y, z)] + /// @returns The status flags for the query. + dtStatus findDistanceToWall(dtPolyRef startRef, const float* centerPos, const float maxRadius, + const dtQueryFilter* filter, + float* hitDist, float* hitPos, float* hitNormal) const; + + /// Returns the segments for the specified polygon, optionally including portals. + /// @param[in] ref The reference id of the polygon. + /// @param[in] filter The polygon filter to apply to the query. + /// @param[out] segmentVerts The segments. [(ax, ay, az, bx, by, bz) * segmentCount] + /// @param[out] segmentRefs The reference ids of each segment's neighbor polygon. + /// Or zero if the segment is a wall. [opt] [(parentRef) * @p segmentCount] + /// @param[out] segmentCount The number of segments returned. + /// @param[in] maxSegments The maximum number of segments the result arrays can hold. + /// @returns The status flags for the query. + dtStatus getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* filter, + float* segmentVerts, dtPolyRef* segmentRefs, int* segmentCount, + const int maxSegments) const; + + /// Returns random location on navmesh. + /// Polygons are chosen weighted by area. The search runs in linear related to number of polygon. + /// @param[in] filter The polygon filter to apply to the query. + /// @param[in] frand Function returning a random number [0..1). + /// @param[out] randomRef The reference id of the random location. + /// @param[out] randomPt The random location. + /// @returns The status flags for the query. + dtStatus findRandomPoint(const dtQueryFilter* filter, float (*frand)(), + dtPolyRef* randomRef, float* randomPt) const; + + /// Returns random location on navmesh within the reach of specified location. + /// Polygons are chosen weighted by area. The search runs in linear related to number of polygon. + /// The location is not exactly constrained by the circle, but it limits the visited polygons. + /// @param[in] startRef The reference id of the polygon where the search starts. + /// @param[in] centerPos The center of the search circle. [(x, y, z)] + /// @param[in] filter The polygon filter to apply to the query. + /// @param[in] frand Function returning a random number [0..1). + /// @param[out] randomRef The reference id of the random location. + /// @param[out] randomPt The random location. [(x, y, z)] + /// @returns The status flags for the query. + dtStatus findRandomPointAroundCircle(dtPolyRef startRef, const float* centerPos, const float maxRadius, + const dtQueryFilter* filter, float (*frand)(), + dtPolyRef* randomRef, float* randomPt) const; + + /// Finds the closest point on the specified polygon. + /// @param[in] ref The reference id of the polygon. + /// @param[in] pos The position to check. [(x, y, z)] + /// @param[out] closest The closest point on the polygon. [(x, y, z)] + /// @param[out] posOverPoly True of the position is over the polygon. + /// @returns The status flags for the query. + dtStatus closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const; + + /// Returns a point on the boundary closest to the source point if the source point is outside the + /// polygon's xz-bounds. + /// @param[in] ref The reference id to the polygon. + /// @param[in] pos The position to check. [(x, y, z)] + /// @param[out] closest The closest point. [(x, y, z)] + /// @returns The status flags for the query. + dtStatus closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const; + + /// Gets the height of the polygon at the provided position using the height detail. (Most accurate.) + /// @param[in] ref The reference id of the polygon. + /// @param[in] pos A position within the xz-bounds of the polygon. [(x, y, z)] + /// @param[out] height The height at the surface of the polygon. + /// @returns The status flags for the query. + dtStatus getPolyHeight(dtPolyRef ref, const float* pos, float* height) const; + + /// @} + /// @name Miscellaneous Functions + /// @{ + + /// Returns true if the polygon reference is valid and passes the filter restrictions. + /// @param[in] ref The polygon reference to check. + /// @param[in] filter The filter to apply. + bool isValidPolyRef(dtPolyRef ref, const dtQueryFilter* filter) const; + + /// Returns true if the polygon reference is in the closed list. + /// @param[in] ref The reference id of the polygon to check. + /// @returns True if the polygon is in closed list. + bool isInClosedList(dtPolyRef ref) const; + + /// Gets the node pool. + /// @returns The node pool. + class dtNodePool* getNodePool() const { return m_nodePool; } + + /// Gets the navigation mesh the query object is using. + /// @return The navigation mesh the query object is using. + const dtNavMesh* getAttachedNavMesh() const { return m_nav; } + + /// @} + +private: + // Explicitly disabled copy constructor and copy assignment operator + dtNavMeshQuery(const dtNavMeshQuery&); + dtNavMeshQuery& operator=(const dtNavMeshQuery&); + + /// Queries polygons within a tile. + void queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax, + const dtQueryFilter* filter, dtPolyQuery* query) const; + + /// Returns portal points between two polygons. + dtStatus getPortalPoints(dtPolyRef from, dtPolyRef to, float* left, float* right, + unsigned char& fromType, unsigned char& toType) const; + dtStatus getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile, + dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile, + float* left, float* right) const; + + /// Returns edge mid point between two polygons. + dtStatus getEdgeMidPoint(dtPolyRef from, dtPolyRef to, float* mid) const; + dtStatus getEdgeMidPoint(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile, + dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile, + float* mid) const; + + // Appends vertex to a straight path + dtStatus appendVertex(const float* pos, const unsigned char flags, const dtPolyRef ref, + float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, + int* straightPathCount, const int maxStraightPath) const; + + // Appends intermediate portal points to a straight path. + dtStatus appendPortals(const int startIdx, const int endIdx, const float* endPos, const dtPolyRef* path, + float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, + int* straightPathCount, const int maxStraightPath, const int options) const; + + // Gets the path leading to the specified end node. + dtStatus getPathToNode(struct dtNode* endNode, dtPolyRef* path, int* pathCount, int maxPath) const; + + const dtNavMesh* m_nav; ///< Pointer to navmesh data. + + struct dtQueryData + { + dtStatus status; + struct dtNode* lastBestNode; + float lastBestNodeCost; + dtPolyRef startRef, endRef; + float startPos[3], endPos[3]; + const dtQueryFilter* filter; + unsigned int options; + float raycastLimitSqr; + }; + dtQueryData m_query; ///< Sliced query state. + + class dtNodePool* m_tinyNodePool; ///< Pointer to small node pool. + class dtNodePool* m_nodePool; ///< Pointer to node pool. + class dtNodeQueue* m_openList; ///< Pointer to open list queue. +}; + +/// Allocates a query object using the Detour allocator. +/// @return An allocated query object, or null on failure. +/// @ingroup detour +dtNavMeshQuery* dtAllocNavMeshQuery(); + +/// Frees the specified query object using the Detour allocator. +/// @param[in] query A query object allocated using #dtAllocNavMeshQuery +/// @ingroup detour +void dtFreeNavMeshQuery(dtNavMeshQuery* query); + +#endif // DETOURNAVMESHQUERY_H diff --git a/Pathing/Detour/Include/DetourNode.h b/Pathing/Detour/Include/DetourNode.h new file mode 100644 index 0000000000..db09747080 --- /dev/null +++ b/Pathing/Detour/Include/DetourNode.h @@ -0,0 +1,168 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#ifndef DETOURNODE_H +#define DETOURNODE_H + +#include "DetourNavMesh.h" + +enum dtNodeFlags +{ + DT_NODE_OPEN = 0x01, + DT_NODE_CLOSED = 0x02, + DT_NODE_PARENT_DETACHED = 0x04, // parent of the node is not adjacent. Found using raycast. +}; + +typedef unsigned short dtNodeIndex; +static const dtNodeIndex DT_NULL_IDX = (dtNodeIndex)~0; + +static const int DT_NODE_PARENT_BITS = 24; +static const int DT_NODE_STATE_BITS = 2; +struct dtNode +{ + float pos[3]; ///< Position of the node. + float cost; ///< Cost from previous node to current node. + float total; ///< Cost up to the node. + unsigned int pidx : DT_NODE_PARENT_BITS; ///< Index to parent node. + unsigned int state : DT_NODE_STATE_BITS; ///< extra state information. A polyRef can have multiple nodes with different extra info. see DT_MAX_STATES_PER_NODE + unsigned int flags : 3; ///< Node flags. A combination of dtNodeFlags. + dtPolyRef id; ///< Polygon ref the node corresponds to. +}; + +static const int DT_MAX_STATES_PER_NODE = 1 << DT_NODE_STATE_BITS; // number of extra states per node. See dtNode::state + +class dtNodePool +{ +public: + dtNodePool(int maxNodes, int hashSize); + ~dtNodePool(); + void clear(); + + // Get a dtNode by ref and extra state information. If there is none then - allocate + // There can be more than one node for the same polyRef but with different extra state information + dtNode* getNode(dtPolyRef id, unsigned char state=0); + dtNode* findNode(dtPolyRef id, unsigned char state); + unsigned int findNodes(dtPolyRef id, dtNode** nodes, const int maxNodes); + + inline unsigned int getNodeIdx(const dtNode* node) const + { + if (!node) return 0; + return (unsigned int)(node - m_nodes) + 1; + } + + inline dtNode* getNodeAtIdx(unsigned int idx) + { + if (!idx) return 0; + return &m_nodes[idx - 1]; + } + + inline const dtNode* getNodeAtIdx(unsigned int idx) const + { + if (!idx) return 0; + return &m_nodes[idx - 1]; + } + + inline int getMemUsed() const + { + return sizeof(*this) + + sizeof(dtNode)*m_maxNodes + + sizeof(dtNodeIndex)*m_maxNodes + + sizeof(dtNodeIndex)*m_hashSize; + } + + inline int getMaxNodes() const { return m_maxNodes; } + + inline int getHashSize() const { return m_hashSize; } + inline dtNodeIndex getFirst(int bucket) const { return m_first[bucket]; } + inline dtNodeIndex getNext(int i) const { return m_next[i]; } + inline int getNodeCount() const { return m_nodeCount; } + +private: + // Explicitly disabled copy constructor and copy assignment operator. + dtNodePool(const dtNodePool&); + dtNodePool& operator=(const dtNodePool&); + + dtNode* m_nodes; + dtNodeIndex* m_first; + dtNodeIndex* m_next; + const int m_maxNodes; + const int m_hashSize; + int m_nodeCount; +}; + +class dtNodeQueue +{ +public: + dtNodeQueue(int n); + ~dtNodeQueue(); + + inline void clear() { m_size = 0; } + + inline dtNode* top() { return m_heap[0]; } + + inline dtNode* pop() + { + dtNode* result = m_heap[0]; + m_size--; + trickleDown(0, m_heap[m_size]); + return result; + } + + inline void push(dtNode* node) + { + m_size++; + bubbleUp(m_size-1, node); + } + + inline void modify(dtNode* node) + { + for (int i = 0; i < m_size; ++i) + { + if (m_heap[i] == node) + { + bubbleUp(i, node); + return; + } + } + } + + inline bool empty() const { return m_size == 0; } + + inline int getMemUsed() const + { + return sizeof(*this) + + sizeof(dtNode*) * (m_capacity + 1); + } + + inline int getCapacity() const { return m_capacity; } + +private: + // Explicitly disabled copy constructor and copy assignment operator. + dtNodeQueue(const dtNodeQueue&); + dtNodeQueue& operator=(const dtNodeQueue&); + + void bubbleUp(int i, dtNode* node); + void trickleDown(int i, dtNode* node); + + dtNode** m_heap; + const int m_capacity; + int m_size; +}; + + +#endif // DETOURNODE_H diff --git a/Pathing/Detour/Include/DetourStatus.h b/Pathing/Detour/Include/DetourStatus.h new file mode 100644 index 0000000000..8e1bb44b9d --- /dev/null +++ b/Pathing/Detour/Include/DetourStatus.h @@ -0,0 +1,65 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#ifndef DETOURSTATUS_H +#define DETOURSTATUS_H + +typedef unsigned int dtStatus; + +// High level status. +static const unsigned int DT_FAILURE = 1u << 31; // Operation failed. +static const unsigned int DT_SUCCESS = 1u << 30; // Operation succeed. +static const unsigned int DT_IN_PROGRESS = 1u << 29; // Operation still in progress. + +// Detail information for status. +static const unsigned int DT_STATUS_DETAIL_MASK = 0x0ffffff; +static const unsigned int DT_WRONG_MAGIC = 1 << 0; // Input data is not recognized. +static const unsigned int DT_WRONG_VERSION = 1 << 1; // Input data is in wrong version. +static const unsigned int DT_OUT_OF_MEMORY = 1 << 2; // Operation ran out of memory. +static const unsigned int DT_INVALID_PARAM = 1 << 3; // An input parameter was invalid. +static const unsigned int DT_BUFFER_TOO_SMALL = 1 << 4; // Result buffer for the query was too small to store all results. +static const unsigned int DT_OUT_OF_NODES = 1 << 5; // Query ran out of nodes during search. +static const unsigned int DT_PARTIAL_RESULT = 1 << 6; // Query did not reach the end location, returning best guess. +static const unsigned int DT_ALREADY_OCCUPIED = 1 << 7; // A tile has already been assigned to the given x,y coordinate + + +// Returns true of status is success. +inline bool dtStatusSucceed(dtStatus status) +{ + return (status & DT_SUCCESS) != 0; +} + +// Returns true of status is failure. +inline bool dtStatusFailed(dtStatus status) +{ + return (status & DT_FAILURE) != 0; +} + +// Returns true of status is in progress. +inline bool dtStatusInProgress(dtStatus status) +{ + return (status & DT_IN_PROGRESS) != 0; +} + +// Returns true if specific detail is set. +inline bool dtStatusDetail(dtStatus status, unsigned int detail) +{ + return (status & detail) != 0; +} + +#endif // DETOURSTATUS_H diff --git a/Pathing/Detour/Include/dol_detour.hpp b/Pathing/Detour/Include/dol_detour.hpp new file mode 100644 index 0000000000..6f00569d12 --- /dev/null +++ b/Pathing/Detour/Include/dol_detour.hpp @@ -0,0 +1,39 @@ +#pragma once + +#include "DetourCommon.h" +#include "DetourNavMesh.h" +#include "DetourNavMeshQuery.h" + +#ifdef _WIN32 +# define DLLEXPORT extern "C" __declspec(dllexport) +#else +# define DLLEXPORT extern "C" +#endif + +#define MAX_POLY 256 + +enum dtPolyFlags : unsigned short +{ + WALK = 0x01, // Ability to walk (ground, grass, road) + SWIM = 0x02, // Ability to swim (water). + DOOR = 0x04, // Ability to move through doors. + JUMP = 0x08, // Ability to jump. + DISABLED = 0x10, // Disabled polygon + DOOR_ALB = 0x20, + DOOR_MID = 0x40, + DOOR_HIB = 0x80, + ALL = 0xffff // All abilities. +}; + +DLLEXPORT bool LoadNavMesh(char const* file, dtNavMesh** const mesh); +DLLEXPORT bool FreeNavMesh(dtNavMesh* meshPtr); + +DLLEXPORT bool CreateNavMeshQuery(dtNavMesh* mesh, dtNavMeshQuery** const query); +DLLEXPORT bool FreeNavMeshQuery(dtNavMeshQuery* query); + +DLLEXPORT dtStatus PathStraight(dtNavMeshQuery* query, float start[], float end[], float polyPickExt[], dtPolyFlags queryFilter[], dtStraightPathOptions pathOptions, int* pointCount, float* pointBuffer, dtPolyFlags* pointFlags); +DLLEXPORT dtStatus FindRandomPointAroundCircle(dtNavMeshQuery* query, float center[], float radius, float polyPickExt[], dtPolyFlags queryFilter[], float* outputVector); +DLLEXPORT dtStatus FindClosestPoint(dtNavMeshQuery* query, float center[], float polyPickExt[], dtPolyFlags queryFilter[], float* outputVector); +DLLEXPORT dtStatus GetPolyAt(dtNavMeshQuery* query, float* center, float* extents, unsigned short* queryFilter, dtPolyRef* polyRef, float* point); +DLLEXPORT dtStatus SetPolyFlags(dtNavMesh* navMesh, dtPolyRef ref, unsigned short flags); +DLLEXPORT dtStatus QueryPolygons(dtNavMeshQuery* query, float* center, float* polyPickExtents, unsigned short* queryFilter, dtPolyRef* polys, int* polyCount, int maxPolys); diff --git a/Pathing/Detour/README.md b/Pathing/Detour/README.md new file mode 100644 index 0000000000..c05584e779 --- /dev/null +++ b/Pathing/Detour/README.md @@ -0,0 +1,45 @@ +Pathing with Detour +=================== + +Recast is accompanied by Detour, a path-finding and spatial reasoning toolkit. You can use any navigation mesh with Detour, but of course the data generated with Recast fits perfectly. + +Detour offers a simple static navmesh data representation which is suitable for many simple cases. It also provides a tiled navigation mesh representation, which allows you to stream of navigation data in and out as the player progresses through the world and regenerate sections of the navmesh data as the world changes. + +This project is based on [recastnavigation](https://github.com/recastnavigation/recastnavigation). + +## How to use with DOL +You need to generate navmeshes (navigation meshes) with [Uthgard open source tools](https://github.com/thekroko/uthgard-opensource/tree/master/pathing) or download them from [Amtenael](https://amtenael.fr/pathing.7z) (some zones are missing). + +You can create a "pathing" folder in your DOL folder (where you have DOLServer.exe) and copy the navmeshes. + +Caution: if you use all navmeshes, you will need at least 5GB of RAM and DOL will be take some time to load. + +## Build (Windows) +This guide will use Visual Studio 2022. + +You will need to build the dll for that, you need some tools: +- Install [Visual Studio with "Desktop development with C++"](https://visualstudio.microsoft.com/downloads/) +- Install [CMake](https://cmake.org/download/) + +About Linux, you can use your package manager to install theses tools: cmake, g++ or clang++ and gmake (often included in a "build-essentials" package). + +1. Open CMake (cmake-gui) +2. In "Where is the source code", put the path for this folder (example: `C:/dev/DOLSharp/Pathing/Detour`) +3. In "Where to build the binaries", you can copy the source code path and add `/build` at the end +4. Click on "Configure" + .. Accept to create the build folder + .. Select "Visual Studio 17 2022" as generator + .. Click on "Finish" +5. Click on "Generate" and "Open Project" +6. Visual Studio should open with DOL_Detour +7. Select "Release" instead of "Debug" and build the solution +8. You can copy dol_detour.dll from `Release` in your build folder to your DOL folder + +## Build (Linux) +- Debian / Ubuntu: `sudo apt-get install build-essential cmake` +- Archlinux: `sudo pacman -Sy base-devel cmake` + +1. Open a terminal in this path +2. `mkdir build && cd build` +3. `cmake -DCMAKE_BUILD_TYPE=Release .. && make` +4. Copy `libdol_detour.so` in your DOL folder diff --git a/Pathing/Detour/Source/DOLInterface.cpp b/Pathing/Detour/Source/DOLInterface.cpp new file mode 100644 index 0000000000..fab29e4be8 --- /dev/null +++ b/Pathing/Detour/Source/DOLInterface.cpp @@ -0,0 +1,268 @@ +#include +#include +#include +#include +#include +#include + +#include "dol_detour.hpp" + +/* + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl, CharSet = CharSet.Ansi)] + private static extern bool LoadNavMesh(string file, ref IntPtr meshPtr, ref IntPtr queryPtr); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern bool FreeNavMesh(IntPtr meshPtr, IntPtr queryPtr); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern dtStatus PathStraight(IntPtr queryPtr, float[] start, float[] end, float[] polyPickExt, dtPolyFlags[] queryFilter, dtStraightPathOptions pathOptions, ref int pointCount, float[] pointBuffer, dtPolyFlags[] pointFlags); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern dtStatus FindRandomPointAroundCircle(IntPtr queryPtr, float[] center, float radius, float[] polyPickExt, dtPolyFlags[] queryFilter, float[] outputVector); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern dtStatus FindClosestPoint(IntPtr queryPtr, float[] center, float[] polyPickExt, dtPolyFlags[] queryFilter, float[] outputVector); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern dtStatus GetPolyAt(IntPtr queryPtr, float[] center, float[] polyPickExt, dtPolyFlags[] queryFilter, ref uint outputPolyRef, float[] outputVector); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern dtStatus SetPolyFlags(IntPtr meshPtr, uint polyRef, dtPolyFlags flags); + + [DllImport("dol_detour", CallingConvention = CallingConvention.Cdecl)] + private static extern dtStatus QueryPolygons(IntPtr queryPtr, float[] center, float[] polyPickExt, dtPolyFlags[] queryFilter, uint[] outputPolyRefs, ref int outputPolyCount, int maxPolyCount); +*/ + +// RAII helper +struct RAII +{ + std::function cleaner; + RAII(std::function cleaner) : cleaner(cleaner) {} + ~RAII() { this->cleaner(); } +}; + +// missing from Detour? +struct dtNavMeshSetHeader +{ + std::int32_t magic; + std::int32_t version; + std::int32_t numTiles; + dtNavMeshParams params; +}; +struct dtNavMeshTileHeader +{ + dtTileRef ref; + std::int32_t size; +}; + +DLLEXPORT bool LoadNavMesh(char const *file, dtNavMesh **const mesh) +{ + // load the file + auto fp = std::fopen(file, "rb"); + if (!fp) + return false; + + // scope for fp closing + { + auto _fpRAII = RAII([=] + { std::fclose(fp); }); + + dtNavMeshSetHeader header; + fread(&header, sizeof(header), 1, fp); + + if (header.magic != 0x4d534554 || header.version != 1) + return false; + + // init mesh and query + *mesh = dtAllocNavMesh(); + auto status = (*mesh)->init(&header.params); + if (dtStatusFailed(status)) + { + dtFreeNavMesh(*mesh); + *mesh = nullptr; + return false; + } + if (header.numTiles > 0) + { + auto tileIdx = 0; + while (tileIdx < header.numTiles) + { + dtNavMeshTileHeader tileHeader; + fread(&tileHeader, sizeof(tileHeader), 1, fp); + void *data; + if (tileHeader.ref == 0 || tileHeader.size == 0 || (data = dtAlloc(tileHeader.size, DT_ALLOC_PERM)) == 0) + break; + memset(data, 0, tileHeader.size); + fread(data, tileHeader.size, 1, fp); + (*mesh)->addTile((unsigned char *)data, tileHeader.size, 1, tileHeader.ref, nullptr); + tileIdx += 1; + } + } + } + return true; +} + +DLLEXPORT bool FreeNavMesh(dtNavMesh *meshPtr) +{ + if (meshPtr) + dtFreeNavMesh(meshPtr); + return true; +} + +DLLEXPORT bool CreateNavMeshQuery(dtNavMesh *mesh, dtNavMeshQuery **const query) +{ + + *query = dtAllocNavMeshQuery(); + auto status = (*query)->init(mesh, 2048); + if (dtStatusFailed(status)) + { + dtFreeNavMeshQuery(*query); + *query = nullptr; + return false; + } + return true; +} +DLLEXPORT bool FreeNavMeshQuery(dtNavMeshQuery *queryPtr) +{ + if (queryPtr) + dtFreeNavMeshQuery(queryPtr); + return true; +} + +static inline bool IsMidPointOnPath(float const* A, float const* B, float const* C) +{ + float vectAC[3]; + dtVsub(vectAC, C, A); + dtVnormalize(vectAC); + float vectAB[3]; + dtVsub(vectAB, B, A); + float cross[3]; + dtVcross(cross, vectAB, vectAC); + float len = dtVlen(cross); + return len <= 1; +} + +void PathOptimize(dtNavMeshQuery *query, int *pointCount, float *pointBuffer, dtPolyRef *refs) +{ + for (int i = 0; i < *pointCount - 2; ++i) + { + unsigned short flags[2]; + query->getAttachedNavMesh()->getPolyFlags(refs[i + 0], flags + 0); + query->getAttachedNavMesh()->getPolyFlags(refs[i + 1], flags + 1); + if (flags[0] != flags[1]) // we can't merge 2 different points + continue; + + // we take 3 points: first --- mid --- last and check if mid is on the line, in this case, we remove mid + float const *A = &(pointBuffer[(i + 0) * 3]); + float const *B = &(pointBuffer[(i + 1) * 3]); // mid, point to remove + float const *C = &(pointBuffer[(i + 2) * 3]); + + if (IsMidPointOnPath(A, B, C)) + { + std::copy(pointBuffer + (i + 2) * 3, pointBuffer + (*pointCount) * 3, pointBuffer + (i + 1) * 3); + std::copy(refs + i + 2, refs + *pointCount, refs + i + 1); + *pointCount -= 1; + --i; // we redo this loop + } + } +} + +DLLEXPORT dtStatus PathStraight(dtNavMeshQuery *query, float start[], float end[], float polyPickExt[], dtPolyFlags queryFilter[], dtStraightPathOptions pathOptions, int *pointCount, float *pointBuffer, dtPolyFlags *pointFlags) +{ + dtStatus status; + *pointCount = 0; + + dtPolyRef startRef; + dtPolyRef endRef; + dtQueryFilter filter; + filter.setIncludeFlags(queryFilter[0]); + filter.setExcludeFlags(queryFilter[1]); + if (dtStatusSucceed(status = query->findNearestPoly(start, polyPickExt, &filter, &startRef, nullptr)) && dtStatusSucceed(status = query->findNearestPoly(end, polyPickExt, &filter, &endRef, nullptr))) + { + int npolys = 0; + dtPolyRef polys[MAX_POLY]; + if (dtStatusSucceed(status = query->findPath(startRef, endRef, start, end, &filter, polys, &npolys, MAX_POLY))) + { + float epos[3]; + epos[0] = end[0]; + epos[1] = end[1]; + epos[2] = end[2]; + if ((polys[npolys + -1] == endRef) || dtStatusSucceed(status = query->closestPointOnPoly(polys[npolys + -1], end, epos, nullptr))) + { + dtPolyRef straightPathPolys[MAX_POLY]; + unsigned char straightPathFlags[MAX_POLY]; + auto straightPathRefs = &straightPathPolys[0]; + if (dtStatusSucceed(status = query->findStraightPath(start, epos, polys, npolys, pointBuffer, straightPathFlags, straightPathRefs, pointCount, MAX_POLY, pathOptions)) && (0 < *pointCount)) + { + PathOptimize(query, pointCount, pointBuffer, straightPathRefs); + int pointIdx = 0; + while (*pointCount != pointIdx && pointIdx <= *pointCount) + { + auto ref = *straightPathRefs; + pointIdx = pointIdx + 1; + straightPathRefs = straightPathRefs + 1; + query->getAttachedNavMesh()->getPolyFlags(ref, (unsigned short *)pointFlags); + pointFlags = pointFlags + 1; + } + } + } + } + } + return status; +} + +thread_local std::mt19937 rngMt = std::mt19937(std::random_device{}()); +thread_local std::uniform_real_distribution rng(0.0f, 1.0f); + +float frand() +{ + return rng(rngMt); +} + +DLLEXPORT dtStatus FindRandomPointAroundCircle(dtNavMeshQuery *query, float center[], float radius, float polyPickExt[], dtPolyFlags queryFilter[], float *outputVector) +{ + dtQueryFilter filter; + filter.setIncludeFlags(queryFilter[0]); + filter.setExcludeFlags(queryFilter[1]); + dtPolyRef centerRef; + auto status = query->findNearestPoly(center, polyPickExt, &filter, ¢erRef, nullptr); + if (dtStatusSucceed(status)) + { + dtPolyRef outRef; + status = query->findRandomPointAroundCircle(centerRef, center, radius, &filter, frand, &outRef, outputVector); + } + return status; +} + +DLLEXPORT dtStatus FindClosestPoint(dtNavMeshQuery *query, float center[], float polyPickExt[], dtPolyFlags queryFilter[], float *outputVector) +{ + dtQueryFilter filter; + filter.setIncludeFlags(queryFilter[0]); + filter.setExcludeFlags(queryFilter[1]); + dtPolyRef centerRef; + auto status = query->findNearestPoly(center, polyPickExt, &filter, ¢erRef, nullptr); + if (dtStatusSucceed(status)) + status = query->closestPointOnPoly(centerRef, center, outputVector, nullptr); + return status; +} + +DLLEXPORT dtStatus GetPolyAt(dtNavMeshQuery *query, float *center, float *extents, unsigned short *queryFilter, dtPolyRef *polyRef, float *point) +{ + dtQueryFilter filter; + filter.setIncludeFlags(queryFilter[0]); + filter.setExcludeFlags(queryFilter[1]); + return query->findNearestPoly(center, extents, &filter, polyRef, point); +} + +DLLEXPORT dtStatus SetPolyFlags(dtNavMesh *navMesh, dtPolyRef ref, unsigned short flags) +{ + return navMesh->setPolyFlags(ref, flags); +} + +DLLEXPORT dtStatus QueryPolygons(dtNavMeshQuery *query, float *center, float *polyPickExtents, unsigned short *queryFilter, dtPolyRef *polys, int *polyCount, int maxPolys) +{ + dtQueryFilter filter; + filter.setIncludeFlags(queryFilter[0]); + filter.setExcludeFlags(queryFilter[1]); + return query->queryPolygons(center, polyPickExtents, &filter, polys, polyCount, maxPolys); +} diff --git a/Pathing/Detour/Source/DetourAlloc.cpp b/Pathing/Detour/Source/DetourAlloc.cpp new file mode 100644 index 0000000000..d9ad1fc013 --- /dev/null +++ b/Pathing/Detour/Source/DetourAlloc.cpp @@ -0,0 +1,50 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include +#include "DetourAlloc.h" + +static void *dtAllocDefault(size_t size, dtAllocHint) +{ + return malloc(size); +} + +static void dtFreeDefault(void *ptr) +{ + free(ptr); +} + +static dtAllocFunc* sAllocFunc = dtAllocDefault; +static dtFreeFunc* sFreeFunc = dtFreeDefault; + +void dtAllocSetCustom(dtAllocFunc *allocFunc, dtFreeFunc *freeFunc) +{ + sAllocFunc = allocFunc ? allocFunc : dtAllocDefault; + sFreeFunc = freeFunc ? freeFunc : dtFreeDefault; +} + +void* dtAlloc(size_t size, dtAllocHint hint) +{ + return sAllocFunc(size, hint); +} + +void dtFree(void* ptr) +{ + if (ptr) + sFreeFunc(ptr); +} diff --git a/Pathing/Detour/Source/DetourAssert.cpp b/Pathing/Detour/Source/DetourAssert.cpp new file mode 100644 index 0000000000..5e019e0cfc --- /dev/null +++ b/Pathing/Detour/Source/DetourAssert.cpp @@ -0,0 +1,35 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include "DetourAssert.h" + +#ifndef NDEBUG + +static dtAssertFailFunc* sAssertFailFunc = 0; + +void dtAssertFailSetCustom(dtAssertFailFunc *assertFailFunc) +{ + sAssertFailFunc = assertFailFunc; +} + +dtAssertFailFunc* dtAssertFailGetCustom() +{ + return sAssertFailFunc; +} + +#endif diff --git a/Pathing/Detour/Source/DetourCommon.cpp b/Pathing/Detour/Source/DetourCommon.cpp new file mode 100644 index 0000000000..b89d7512c4 --- /dev/null +++ b/Pathing/Detour/Source/DetourCommon.cpp @@ -0,0 +1,387 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include "DetourCommon.h" +#include "DetourMath.h" + +////////////////////////////////////////////////////////////////////////////////////////// + +void dtClosestPtPointTriangle(float* closest, const float* p, + const float* a, const float* b, const float* c) +{ + // Check if P in vertex region outside A + float ab[3], ac[3], ap[3]; + dtVsub(ab, b, a); + dtVsub(ac, c, a); + dtVsub(ap, p, a); + float d1 = dtVdot(ab, ap); + float d2 = dtVdot(ac, ap); + if (d1 <= 0.0f && d2 <= 0.0f) + { + // barycentric coordinates (1,0,0) + dtVcopy(closest, a); + return; + } + + // Check if P in vertex region outside B + float bp[3]; + dtVsub(bp, p, b); + float d3 = dtVdot(ab, bp); + float d4 = dtVdot(ac, bp); + if (d3 >= 0.0f && d4 <= d3) + { + // barycentric coordinates (0,1,0) + dtVcopy(closest, b); + return; + } + + // Check if P in edge region of AB, if so return projection of P onto AB + float vc = d1*d4 - d3*d2; + if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f) + { + // barycentric coordinates (1-v,v,0) + float v = d1 / (d1 - d3); + closest[0] = a[0] + v * ab[0]; + closest[1] = a[1] + v * ab[1]; + closest[2] = a[2] + v * ab[2]; + return; + } + + // Check if P in vertex region outside C + float cp[3]; + dtVsub(cp, p, c); + float d5 = dtVdot(ab, cp); + float d6 = dtVdot(ac, cp); + if (d6 >= 0.0f && d5 <= d6) + { + // barycentric coordinates (0,0,1) + dtVcopy(closest, c); + return; + } + + // Check if P in edge region of AC, if so return projection of P onto AC + float vb = d5*d2 - d1*d6; + if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f) + { + // barycentric coordinates (1-w,0,w) + float w = d2 / (d2 - d6); + closest[0] = a[0] + w * ac[0]; + closest[1] = a[1] + w * ac[1]; + closest[2] = a[2] + w * ac[2]; + return; + } + + // Check if P in edge region of BC, if so return projection of P onto BC + float va = d3*d6 - d5*d4; + if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f) + { + // barycentric coordinates (0,1-w,w) + float w = (d4 - d3) / ((d4 - d3) + (d5 - d6)); + closest[0] = b[0] + w * (c[0] - b[0]); + closest[1] = b[1] + w * (c[1] - b[1]); + closest[2] = b[2] + w * (c[2] - b[2]); + return; + } + + // P inside face region. Compute Q through its barycentric coordinates (u,v,w) + float denom = 1.0f / (va + vb + vc); + float v = vb * denom; + float w = vc * denom; + closest[0] = a[0] + ab[0] * v + ac[0] * w; + closest[1] = a[1] + ab[1] * v + ac[1] * w; + closest[2] = a[2] + ab[2] * v + ac[2] * w; +} + +bool dtIntersectSegmentPoly2D(const float* p0, const float* p1, + const float* verts, int nverts, + float& tmin, float& tmax, + int& segMin, int& segMax) +{ + static const float EPS = 0.00000001f; + + tmin = 0; + tmax = 1; + segMin = -1; + segMax = -1; + + float dir[3]; + dtVsub(dir, p1, p0); + + for (int i = 0, j = nverts-1; i < nverts; j=i++) + { + float edge[3], diff[3]; + dtVsub(edge, &verts[i*3], &verts[j*3]); + dtVsub(diff, p0, &verts[j*3]); + const float n = dtVperp2D(edge, diff); + const float d = dtVperp2D(dir, edge); + if (fabsf(d) < EPS) + { + // S is nearly parallel to this edge + if (n < 0) + return false; + else + continue; + } + const float t = n / d; + if (d < 0) + { + // segment S is entering across this edge + if (t > tmin) + { + tmin = t; + segMin = j; + // S enters after leaving polygon + if (tmin > tmax) + return false; + } + } + else + { + // segment S is leaving across this edge + if (t < tmax) + { + tmax = t; + segMax = j; + // S leaves before entering polygon + if (tmax < tmin) + return false; + } + } + } + + return true; +} + +float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t) +{ + float pqx = q[0] - p[0]; + float pqz = q[2] - p[2]; + float dx = pt[0] - p[0]; + float dz = pt[2] - p[2]; + float d = pqx*pqx + pqz*pqz; + t = pqx*dx + pqz*dz; + if (d > 0) t /= d; + if (t < 0) t = 0; + else if (t > 1) t = 1; + dx = p[0] + t*pqx - pt[0]; + dz = p[2] + t*pqz - pt[2]; + return dx*dx + dz*dz; +} + +void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts) +{ + tc[0] = 0.0f; + tc[1] = 0.0f; + tc[2] = 0.0f; + for (int j = 0; j < nidx; ++j) + { + const float* v = &verts[idx[j]*3]; + tc[0] += v[0]; + tc[1] += v[1]; + tc[2] += v[2]; + } + const float s = 1.0f / nidx; + tc[0] *= s; + tc[1] *= s; + tc[2] *= s; +} + +bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h) +{ + const float EPS = 1e-6f; + float v0[3], v1[3], v2[3]; + + dtVsub(v0, c, a); + dtVsub(v1, b, a); + dtVsub(v2, p, a); + + // Compute scaled barycentric coordinates + float denom = v0[0] * v1[2] - v0[2] * v1[0]; + if (fabsf(denom) < EPS) + return false; + + float u = v1[2] * v2[0] - v1[0] * v2[2]; + float v = v0[0] * v2[2] - v0[2] * v2[0]; + + if (denom < 0) { + denom = -denom; + u = -u; + v = -v; + } + + // If point lies inside the triangle, return interpolated ycoord. + if (u >= 0.0f && v >= 0.0f && (u + v) <= denom) { + h = a[1] + (v0[1] * u + v1[1] * v) / denom; + return true; + } + return false; +} + +/// @par +/// +/// All points are projected onto the xz-plane, so the y-values are ignored. +bool dtPointInPolygon(const float* pt, const float* verts, const int nverts) +{ + // TODO: Replace pnpoly with triArea2D tests? + int i, j; + bool c = false; + for (i = 0, j = nverts-1; i < nverts; j = i++) + { + const float* vi = &verts[i*3]; + const float* vj = &verts[j*3]; + if (((vi[2] > pt[2]) != (vj[2] > pt[2])) && + (pt[0] < (vj[0]-vi[0]) * (pt[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) + c = !c; + } + return c; +} + +bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts, + float* ed, float* et) +{ + // TODO: Replace pnpoly with triArea2D tests? + int i, j; + bool c = false; + for (i = 0, j = nverts-1; i < nverts; j = i++) + { + const float* vi = &verts[i*3]; + const float* vj = &verts[j*3]; + if (((vi[2] > pt[2]) != (vj[2] > pt[2])) && + (pt[0] < (vj[0]-vi[0]) * (pt[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) + c = !c; + ed[j] = dtDistancePtSegSqr2D(pt, vj, vi, et[j]); + } + return c; +} + +static void projectPoly(const float* axis, const float* poly, const int npoly, + float& rmin, float& rmax) +{ + rmin = rmax = dtVdot2D(axis, &poly[0]); + for (int i = 1; i < npoly; ++i) + { + const float d = dtVdot2D(axis, &poly[i*3]); + rmin = dtMin(rmin, d); + rmax = dtMax(rmax, d); + } +} + +inline bool overlapRange(const float amin, const float amax, + const float bmin, const float bmax, + const float eps) +{ + return ((amin+eps) > bmax || (amax-eps) < bmin) ? false : true; +} + +/// @par +/// +/// All vertices are projected onto the xz-plane, so the y-values are ignored. +bool dtOverlapPolyPoly2D(const float* polya, const int npolya, + const float* polyb, const int npolyb) +{ + const float eps = 1e-4f; + + for (int i = 0, j = npolya-1; i < npolya; j=i++) + { + const float* va = &polya[j*3]; + const float* vb = &polya[i*3]; + const float n[3] = { vb[2]-va[2], 0, -(vb[0]-va[0]) }; + float amin,amax,bmin,bmax; + projectPoly(n, polya, npolya, amin,amax); + projectPoly(n, polyb, npolyb, bmin,bmax); + if (!overlapRange(amin,amax, bmin,bmax, eps)) + { + // Found separating axis + return false; + } + } + for (int i = 0, j = npolyb-1; i < npolyb; j=i++) + { + const float* va = &polyb[j*3]; + const float* vb = &polyb[i*3]; + const float n[3] = { vb[2]-va[2], 0, -(vb[0]-va[0]) }; + float amin,amax,bmin,bmax; + projectPoly(n, polya, npolya, amin,amax); + projectPoly(n, polyb, npolyb, bmin,bmax); + if (!overlapRange(amin,amax, bmin,bmax, eps)) + { + // Found separating axis + return false; + } + } + return true; +} + +// Returns a random point in a convex polygon. +// Adapted from Graphics Gems article. +void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas, + const float s, const float t, float* out) +{ + // Calc triangle araes + float areasum = 0.0f; + for (int i = 2; i < npts; i++) { + areas[i] = dtTriArea2D(&pts[0], &pts[(i-1)*3], &pts[i*3]); + areasum += dtMax(0.001f, areas[i]); + } + // Find sub triangle weighted by area. + const float thr = s*areasum; + float acc = 0.0f; + float u = 1.0f; + int tri = npts - 1; + for (int i = 2; i < npts; i++) { + const float dacc = areas[i]; + if (thr >= acc && thr < (acc+dacc)) + { + u = (thr - acc) / dacc; + tri = i; + break; + } + acc += dacc; + } + + float v = dtMathSqrtf(t); + + const float a = 1 - v; + const float b = (1 - u) * v; + const float c = u * v; + const float* pa = &pts[0]; + const float* pb = &pts[(tri-1)*3]; + const float* pc = &pts[tri*3]; + + out[0] = a*pa[0] + b*pb[0] + c*pc[0]; + out[1] = a*pa[1] + b*pb[1] + c*pc[1]; + out[2] = a*pa[2] + b*pb[2] + c*pc[2]; +} + +inline float vperpXZ(const float* a, const float* b) { return a[0]*b[2] - a[2]*b[0]; } + +bool dtIntersectSegSeg2D(const float* ap, const float* aq, + const float* bp, const float* bq, + float& s, float& t) +{ + float u[3], v[3], w[3]; + dtVsub(u,aq,ap); + dtVsub(v,bq,bp); + dtVsub(w,ap,bp); + float d = vperpXZ(u,v); + if (fabsf(d) < 1e-6f) return false; + s = vperpXZ(v,w) / d; + t = vperpXZ(u,w) / d; + return true; +} + diff --git a/Pathing/Detour/Source/DetourNavMesh.cpp b/Pathing/Detour/Source/DetourNavMesh.cpp new file mode 100644 index 0000000000..b119cd541a --- /dev/null +++ b/Pathing/Detour/Source/DetourNavMesh.cpp @@ -0,0 +1,1591 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include +#include +#include +#include "DetourNavMesh.h" +#include "DetourNode.h" +#include "DetourCommon.h" +#include "DetourMath.h" +#include "DetourAlloc.h" +#include "DetourAssert.h" +#include + + +inline bool overlapSlabs(const float* amin, const float* amax, + const float* bmin, const float* bmax, + const float px, const float py) +{ + // Check for horizontal overlap. + // The segment is shrunken a little so that slabs which touch + // at end points are not connected. + const float minx = dtMax(amin[0]+px,bmin[0]+px); + const float maxx = dtMin(amax[0]-px,bmax[0]-px); + if (minx > maxx) + return false; + + // Check vertical overlap. + const float ad = (amax[1]-amin[1]) / (amax[0]-amin[0]); + const float ak = amin[1] - ad*amin[0]; + const float bd = (bmax[1]-bmin[1]) / (bmax[0]-bmin[0]); + const float bk = bmin[1] - bd*bmin[0]; + const float aminy = ad*minx + ak; + const float amaxy = ad*maxx + ak; + const float bminy = bd*minx + bk; + const float bmaxy = bd*maxx + bk; + const float dmin = bminy - aminy; + const float dmax = bmaxy - amaxy; + + // Crossing segments always overlap. + if (dmin*dmax < 0) + return true; + + // Check for overlap at endpoints. + const float thr = dtSqr(py*2); + if (dmin*dmin <= thr || dmax*dmax <= thr) + return true; + + return false; +} + +static float getSlabCoord(const float* va, const int side) +{ + if (side == 0 || side == 4) + return va[0]; + else if (side == 2 || side == 6) + return va[2]; + return 0; +} + +static void calcSlabEndPoints(const float* va, const float* vb, float* bmin, float* bmax, const int side) +{ + if (side == 0 || side == 4) + { + if (va[2] < vb[2]) + { + bmin[0] = va[2]; + bmin[1] = va[1]; + bmax[0] = vb[2]; + bmax[1] = vb[1]; + } + else + { + bmin[0] = vb[2]; + bmin[1] = vb[1]; + bmax[0] = va[2]; + bmax[1] = va[1]; + } + } + else if (side == 2 || side == 6) + { + if (va[0] < vb[0]) + { + bmin[0] = va[0]; + bmin[1] = va[1]; + bmax[0] = vb[0]; + bmax[1] = vb[1]; + } + else + { + bmin[0] = vb[0]; + bmin[1] = vb[1]; + bmax[0] = va[0]; + bmax[1] = va[1]; + } + } +} + +inline int computeTileHash(int x, int y, const int mask) +{ + const unsigned int h1 = 0x8da6b343; // Large multiplicative constants; + const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes + unsigned int n = h1 * x + h2 * y; + return (int)(n & mask); +} + +inline unsigned int allocLink(dtMeshTile* tile) +{ + if (tile->linksFreeList == DT_NULL_LINK) + return DT_NULL_LINK; + unsigned int link = tile->linksFreeList; + tile->linksFreeList = tile->links[link].next; + return link; +} + +inline void freeLink(dtMeshTile* tile, unsigned int link) +{ + tile->links[link].next = tile->linksFreeList; + tile->linksFreeList = link; +} + + +dtNavMesh* dtAllocNavMesh() +{ + void* mem = dtAlloc(sizeof(dtNavMesh), DT_ALLOC_PERM); + if (!mem) return 0; + return new(mem) dtNavMesh; +} + +/// @par +/// +/// This function will only free the memory for tiles with the #DT_TILE_FREE_DATA +/// flag set. +void dtFreeNavMesh(dtNavMesh* navmesh) +{ + if (!navmesh) return; + navmesh->~dtNavMesh(); + dtFree(navmesh); +} + +////////////////////////////////////////////////////////////////////////////////////////// + +/** +@class dtNavMesh + +The navigation mesh consists of one or more tiles defining three primary types of structural data: + +A polygon mesh which defines most of the navigation graph. (See rcPolyMesh for its structure.) +A detail mesh used for determining surface height on the polygon mesh. (See rcPolyMeshDetail for its structure.) +Off-mesh connections, which define custom point-to-point edges within the navigation graph. + +The general build process is as follows: + +-# Create rcPolyMesh and rcPolyMeshDetail data using the Recast build pipeline. +-# Optionally, create off-mesh connection data. +-# Combine the source data into a dtNavMeshCreateParams structure. +-# Create a tile data array using dtCreateNavMeshData(). +-# Allocate at dtNavMesh object and initialize it. (For single tile navigation meshes, + the tile data is loaded during this step.) +-# For multi-tile navigation meshes, load the tile data using dtNavMesh::addTile(). + +Notes: + +- This class is usually used in conjunction with the dtNavMeshQuery class for pathfinding. +- Technically, all navigation meshes are tiled. A 'solo' mesh is simply a navigation mesh initialized + to have only a single tile. +- This class does not implement any asynchronous methods. So the ::dtStatus result of all methods will + always contain either a success or failure flag. + +@see dtNavMeshQuery, dtCreateNavMeshData, dtNavMeshCreateParams, #dtAllocNavMesh, #dtFreeNavMesh +*/ + +dtNavMesh::dtNavMesh() : + m_tileWidth(0), + m_tileHeight(0), + m_maxTiles(0), + m_tileLutSize(0), + m_tileLutMask(0), + m_posLookup(0), + m_nextFree(0), + m_tiles(0) +{ +#ifndef DT_POLYREF64 + m_saltBits = 0; + m_tileBits = 0; + m_polyBits = 0; +#endif + memset(&m_params, 0, sizeof(dtNavMeshParams)); + m_orig[0] = 0; + m_orig[1] = 0; + m_orig[2] = 0; +} + +dtNavMesh::~dtNavMesh() +{ + for (int i = 0; i < m_maxTiles; ++i) + { + if (m_tiles[i].flags & DT_TILE_FREE_DATA) + { + dtFree(m_tiles[i].data); + m_tiles[i].data = 0; + m_tiles[i].dataSize = 0; + } + } + dtFree(m_posLookup); + dtFree(m_tiles); +} + +dtStatus dtNavMesh::init(const dtNavMeshParams* params) +{ + memcpy(&m_params, params, sizeof(dtNavMeshParams)); + dtVcopy(m_orig, params->orig); + m_tileWidth = params->tileWidth; + m_tileHeight = params->tileHeight; + + // Init tiles + m_maxTiles = params->maxTiles; + m_tileLutSize = dtNextPow2(params->maxTiles/4); + if (!m_tileLutSize) m_tileLutSize = 1; + m_tileLutMask = m_tileLutSize-1; + + m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM); + if (!m_tiles) + return DT_FAILURE | DT_OUT_OF_MEMORY; + m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM); + if (!m_posLookup) + return DT_FAILURE | DT_OUT_OF_MEMORY; + memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles); + memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize); + m_nextFree = 0; + for (int i = m_maxTiles-1; i >= 0; --i) + { + m_tiles[i].salt = 1; + m_tiles[i].next = m_nextFree; + m_nextFree = &m_tiles[i]; + } + + // Init ID generator values. +#ifndef DT_POLYREF64 + m_tileBits = dtIlog2(dtNextPow2((unsigned int)params->maxTiles)); + m_polyBits = dtIlog2(dtNextPow2((unsigned int)params->maxPolys)); + // Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow. + m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits - m_polyBits); + + if (m_saltBits < 10) + return DT_FAILURE | DT_INVALID_PARAM; +#endif + + return DT_SUCCESS; +} + +dtStatus dtNavMesh::init(unsigned char* data, const int dataSize, const int flags) +{ + // Make sure the data is in right format. + dtMeshHeader* header = (dtMeshHeader*)data; + if (header->magic != DT_NAVMESH_MAGIC) + return DT_FAILURE | DT_WRONG_MAGIC; + if (header->version != DT_NAVMESH_VERSION) + return DT_FAILURE | DT_WRONG_VERSION; + + dtNavMeshParams params; + dtVcopy(params.orig, header->bmin); + params.tileWidth = header->bmax[0] - header->bmin[0]; + params.tileHeight = header->bmax[2] - header->bmin[2]; + params.maxTiles = 1; + params.maxPolys = header->polyCount; + + dtStatus status = init(¶ms); + if (dtStatusFailed(status)) + return status; + + return addTile(data, dataSize, flags, 0, 0); +} + +/// @par +/// +/// @note The parameters are created automatically when the single tile +/// initialization is performed. +const dtNavMeshParams* dtNavMesh::getParams() const +{ + return &m_params; +} + +////////////////////////////////////////////////////////////////////////////////////////// +int dtNavMesh::findConnectingPolys(const float* va, const float* vb, + const dtMeshTile* tile, int side, + dtPolyRef* con, float* conarea, int maxcon) const +{ + if (!tile) return 0; + + float amin[2], amax[2]; + calcSlabEndPoints(va, vb, amin, amax, side); + const float apos = getSlabCoord(va, side); + + // Remove links pointing to 'side' and compact the links array. + float bmin[2], bmax[2]; + unsigned short m = DT_EXT_LINK | (unsigned short)side; + int n = 0; + + dtPolyRef base = getPolyRefBase(tile); + + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* poly = &tile->polys[i]; + const int nv = poly->vertCount; + for (int j = 0; j < nv; ++j) + { + // Skip edges which do not point to the right side. + if (poly->neis[j] != m) continue; + + const float* vc = &tile->verts[poly->verts[j]*3]; + const float* vd = &tile->verts[poly->verts[(j+1) % nv]*3]; + const float bpos = getSlabCoord(vc, side); + + // Segments are not close enough. + if (dtAbs(apos-bpos) > 0.01f) + continue; + + // Check if the segments touch. + calcSlabEndPoints(vc,vd, bmin,bmax, side); + + if (!overlapSlabs(amin,amax, bmin,bmax, 0.01f, tile->header->walkableClimb)) continue; + + // Add return value. + if (n < maxcon) + { + conarea[n*2+0] = dtMax(amin[0], bmin[0]); + conarea[n*2+1] = dtMin(amax[0], bmax[0]); + con[n] = base | (dtPolyRef)i; + n++; + } + break; + } + } + return n; +} + +void dtNavMesh::unconnectLinks(dtMeshTile* tile, dtMeshTile* target) +{ + if (!tile || !target) return; + + const unsigned int targetNum = decodePolyIdTile(getTileRef(target)); + + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* poly = &tile->polys[i]; + unsigned int j = poly->firstLink; + unsigned int pj = DT_NULL_LINK; + while (j != DT_NULL_LINK) + { + if (decodePolyIdTile(tile->links[j].ref) == targetNum) + { + // Remove link. + unsigned int nj = tile->links[j].next; + if (pj == DT_NULL_LINK) + poly->firstLink = nj; + else + tile->links[pj].next = nj; + freeLink(tile, j); + j = nj; + } + else + { + // Advance + pj = j; + j = tile->links[j].next; + } + } + } +} + +void dtNavMesh::connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side) +{ + if (!tile) return; + + // Connect border links. + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* poly = &tile->polys[i]; + + // Create new links. +// unsigned short m = DT_EXT_LINK | (unsigned short)side; + + const int nv = poly->vertCount; + for (int j = 0; j < nv; ++j) + { + // Skip non-portal edges. + if ((poly->neis[j] & DT_EXT_LINK) == 0) + continue; + + const int dir = (int)(poly->neis[j] & 0xff); + if (side != -1 && dir != side) + continue; + + // Create new links + const float* va = &tile->verts[poly->verts[j]*3]; + const float* vb = &tile->verts[poly->verts[(j+1) % nv]*3]; + dtPolyRef nei[4]; + float neia[4*2]; + int nnei = findConnectingPolys(va,vb, target, dtOppositeTile(dir), nei,neia,4); + for (int k = 0; k < nnei; ++k) + { + unsigned int idx = allocLink(tile); + if (idx != DT_NULL_LINK) + { + dtLink* link = &tile->links[idx]; + link->ref = nei[k]; + link->edge = (unsigned char)j; + link->side = (unsigned char)dir; + + link->next = poly->firstLink; + poly->firstLink = idx; + + // Compress portal limits to a byte value. + if (dir == 0 || dir == 4) + { + float tmin = (neia[k*2+0]-va[2]) / (vb[2]-va[2]); + float tmax = (neia[k*2+1]-va[2]) / (vb[2]-va[2]); + if (tmin > tmax) + dtSwap(tmin,tmax); + link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f); + link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f); + } + else if (dir == 2 || dir == 6) + { + float tmin = (neia[k*2+0]-va[0]) / (vb[0]-va[0]); + float tmax = (neia[k*2+1]-va[0]) / (vb[0]-va[0]); + if (tmin > tmax) + dtSwap(tmin,tmax); + link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f); + link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f); + } + } + } + } + } +} + +void dtNavMesh::connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side) +{ + if (!tile) return; + + // Connect off-mesh links. + // We are interested on links which land from target tile to this tile. + const unsigned char oppositeSide = (side == -1) ? 0xff : (unsigned char)dtOppositeTile(side); + + for (int i = 0; i < target->header->offMeshConCount; ++i) + { + dtOffMeshConnection* targetCon = &target->offMeshCons[i]; + if (targetCon->side != oppositeSide) + continue; + + dtPoly* targetPoly = &target->polys[targetCon->poly]; + // Skip off-mesh connections which start location could not be connected at all. + if (targetPoly->firstLink == DT_NULL_LINK) + continue; + + const float halfExtents[3] = { targetCon->rad, target->header->walkableClimb, targetCon->rad }; + + // Find polygon to connect to. + const float* p = &targetCon->pos[3]; + float nearestPt[3]; + dtPolyRef ref = findNearestPolyInTile(tile, p, halfExtents, nearestPt); + if (!ref) + continue; + // findNearestPoly may return too optimistic results, further check to make sure. + if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(targetCon->rad)) + continue; + // Make sure the location is on current mesh. + float* v = &target->verts[targetPoly->verts[1]*3]; + dtVcopy(v, nearestPt); + + // Link off-mesh connection to target poly. + unsigned int idx = allocLink(target); + if (idx != DT_NULL_LINK) + { + dtLink* link = &target->links[idx]; + link->ref = ref; + link->edge = (unsigned char)1; + link->side = oppositeSide; + link->bmin = link->bmax = 0; + // Add to linked list. + link->next = targetPoly->firstLink; + targetPoly->firstLink = idx; + } + + // Link target poly to off-mesh connection. + if (targetCon->flags & DT_OFFMESH_CON_BIDIR) + { + unsigned int tidx = allocLink(tile); + if (tidx != DT_NULL_LINK) + { + const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref); + dtPoly* landPoly = &tile->polys[landPolyIdx]; + dtLink* link = &tile->links[tidx]; + link->ref = getPolyRefBase(target) | (dtPolyRef)(targetCon->poly); + link->edge = 0xff; + link->side = (unsigned char)(side == -1 ? 0xff : side); + link->bmin = link->bmax = 0; + // Add to linked list. + link->next = landPoly->firstLink; + landPoly->firstLink = tidx; + } + } + } + +} + +void dtNavMesh::connectIntLinks(dtMeshTile* tile) +{ + if (!tile) return; + + dtPolyRef base = getPolyRefBase(tile); + + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* poly = &tile->polys[i]; + poly->firstLink = DT_NULL_LINK; + + if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + + // Build edge links backwards so that the links will be + // in the linked list from lowest index to highest. + for (int j = poly->vertCount-1; j >= 0; --j) + { + // Skip hard and non-internal edges. + if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue; + + unsigned int idx = allocLink(tile); + if (idx != DT_NULL_LINK) + { + dtLink* link = &tile->links[idx]; + link->ref = base | (dtPolyRef)(poly->neis[j]-1); + link->edge = (unsigned char)j; + link->side = 0xff; + link->bmin = link->bmax = 0; + // Add to linked list. + link->next = poly->firstLink; + poly->firstLink = idx; + } + } + } +} + +void dtNavMesh::baseOffMeshLinks(dtMeshTile* tile) +{ + if (!tile) return; + + dtPolyRef base = getPolyRefBase(tile); + + // Base off-mesh connection start points. + for (int i = 0; i < tile->header->offMeshConCount; ++i) + { + dtOffMeshConnection* con = &tile->offMeshCons[i]; + dtPoly* poly = &tile->polys[con->poly]; + + const float halfExtents[3] = { con->rad, tile->header->walkableClimb, con->rad }; + + // Find polygon to connect to. + const float* p = &con->pos[0]; // First vertex + float nearestPt[3]; + dtPolyRef ref = findNearestPolyInTile(tile, p, halfExtents, nearestPt); + if (!ref) continue; + // findNearestPoly may return too optimistic results, further check to make sure. + if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(con->rad)) + continue; + // Make sure the location is on current mesh. + float* v = &tile->verts[poly->verts[0]*3]; + dtVcopy(v, nearestPt); + + // Link off-mesh connection to target poly. + unsigned int idx = allocLink(tile); + if (idx != DT_NULL_LINK) + { + dtLink* link = &tile->links[idx]; + link->ref = ref; + link->edge = (unsigned char)0; + link->side = 0xff; + link->bmin = link->bmax = 0; + // Add to linked list. + link->next = poly->firstLink; + poly->firstLink = idx; + } + + // Start end-point is always connect back to off-mesh connection. + unsigned int tidx = allocLink(tile); + if (tidx != DT_NULL_LINK) + { + const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref); + dtPoly* landPoly = &tile->polys[landPolyIdx]; + dtLink* link = &tile->links[tidx]; + link->ref = base | (dtPolyRef)(con->poly); + link->edge = 0xff; + link->side = 0xff; + link->bmin = link->bmax = 0; + // Add to linked list. + link->next = landPoly->firstLink; + landPoly->firstLink = tidx; + } + } +} + +namespace +{ + template + void closestPointOnDetailEdges(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* closest) + { + const unsigned int ip = (unsigned int)(poly - tile->polys); + const dtPolyDetail* pd = &tile->detailMeshes[ip]; + + float dmin = FLT_MAX; + float tmin = 0; + const float* pmin = 0; + const float* pmax = 0; + + for (int i = 0; i < pd->triCount; i++) + { + const unsigned char* tris = &tile->detailTris[(pd->triBase + i) * 4]; + const int ANY_BOUNDARY_EDGE = + (DT_DETAIL_EDGE_BOUNDARY << 0) | + (DT_DETAIL_EDGE_BOUNDARY << 2) | + (DT_DETAIL_EDGE_BOUNDARY << 4); + if (onlyBoundary && (tris[3] & ANY_BOUNDARY_EDGE) == 0) + continue; + + const float* v[3]; + for (int j = 0; j < 3; ++j) + { + if (tris[j] < poly->vertCount) + v[j] = &tile->verts[poly->verts[tris[j]] * 3]; + else + v[j] = &tile->detailVerts[(pd->vertBase + (tris[j] - poly->vertCount)) * 3]; + } + + for (int k = 0, j = 2; k < 3; j = k++) + { + if ((dtGetDetailTriEdgeFlags(tris[3], j) & DT_DETAIL_EDGE_BOUNDARY) == 0 && + (onlyBoundary || tris[j] < tris[k])) + { + // Only looking at boundary edges and this is internal, or + // this is an inner edge that we will see again or have already seen. + continue; + } + + float t; + float d = dtDistancePtSegSqr2D(pos, v[j], v[k], t); + if (d < dmin) + { + dmin = d; + tmin = t; + pmin = v[j]; + pmax = v[k]; + } + } + } + + dtVlerp(closest, pmin, pmax, tmin); + } +} + +bool dtNavMesh::getPolyHeight(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* height) const +{ + // Off-mesh connections do not have detail polys and getting height + // over them does not make sense. + if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + return false; + + const unsigned int ip = (unsigned int)(poly - tile->polys); + const dtPolyDetail* pd = &tile->detailMeshes[ip]; + + float verts[DT_VERTS_PER_POLYGON*3]; + const int nv = poly->vertCount; + for (int i = 0; i < nv; ++i) + dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]); + + if (!dtPointInPolygon(pos, verts, nv)) + return false; + + if (!height) + return true; + + // Find height at the location. + for (int j = 0; j < pd->triCount; ++j) + { + const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4]; + const float* v[3]; + for (int k = 0; k < 3; ++k) + { + if (t[k] < poly->vertCount) + v[k] = &tile->verts[poly->verts[t[k]]*3]; + else + v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3]; + } + float h; + if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h)) + { + *height = h; + return true; + } + } + + // If all triangle checks failed above (can happen with degenerate triangles + // or larger floating point values) the point is on an edge, so just select + // closest. This should almost never happen so the extra iteration here is + // ok. + float closest[3]; + closestPointOnDetailEdges(tile, poly, pos, closest); + *height = closest[1]; + return true; +} + +void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const +{ + const dtMeshTile* tile = 0; + const dtPoly* poly = 0; + getTileAndPolyByRefUnsafe(ref, &tile, &poly); + + dtVcopy(closest, pos); + if (getPolyHeight(tile, poly, pos, &closest[1])) + { + if (posOverPoly) + *posOverPoly = true; + return; + } + + if (posOverPoly) + *posOverPoly = false; + + // Off-mesh connections don't have detail polygons. + if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + { + const float* v0 = &tile->verts[poly->verts[0]*3]; + const float* v1 = &tile->verts[poly->verts[1]*3]; + float t; + dtDistancePtSegSqr2D(pos, v0, v1, t); + dtVlerp(closest, v0, v1, t); + return; + } + + // Outside poly that is not an offmesh connection. + closestPointOnDetailEdges(tile, poly, pos, closest); +} + +dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile, + const float* center, const float* halfExtents, + float* nearestPt) const +{ + float bmin[3], bmax[3]; + dtVsub(bmin, center, halfExtents); + dtVadd(bmax, center, halfExtents); + + // Get nearby polygons from proximity grid. + dtPolyRef polys[128]; + int polyCount = queryPolygonsInTile(tile, bmin, bmax, polys, 128); + + // Find nearest polygon amongst the nearby polygons. + dtPolyRef nearest = 0; + float nearestDistanceSqr = FLT_MAX; + for (int i = 0; i < polyCount; ++i) + { + dtPolyRef ref = polys[i]; + float closestPtPoly[3]; + float diff[3]; + bool posOverPoly = false; + float d; + closestPointOnPoly(ref, center, closestPtPoly, &posOverPoly); + + // If a point is directly over a polygon and closer than + // climb height, favor that instead of straight line nearest point. + dtVsub(diff, center, closestPtPoly); + if (posOverPoly) + { + d = dtAbs(diff[1]) - tile->header->walkableClimb; + d = d > 0 ? d*d : 0; + } + else + { + d = dtVlenSqr(diff); + } + + if (d < nearestDistanceSqr) + { + dtVcopy(nearestPt, closestPtPoly); + nearestDistanceSqr = d; + nearest = ref; + } + } + + return nearest; +} + +int dtNavMesh::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax, + dtPolyRef* polys, const int maxPolys) const +{ + if (tile->bvTree) + { + const dtBVNode* node = &tile->bvTree[0]; + const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount]; + const float* tbmin = tile->header->bmin; + const float* tbmax = tile->header->bmax; + const float qfac = tile->header->bvQuantFactor; + + // Calculate quantized box + unsigned short bmin[3], bmax[3]; + // dtClamp query box to world box. + float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0]; + float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1]; + float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2]; + float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0]; + float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1]; + float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2]; + // Quantize + bmin[0] = (unsigned short)(qfac * minx) & 0xfffe; + bmin[1] = (unsigned short)(qfac * miny) & 0xfffe; + bmin[2] = (unsigned short)(qfac * minz) & 0xfffe; + bmax[0] = (unsigned short)(qfac * maxx + 1) | 1; + bmax[1] = (unsigned short)(qfac * maxy + 1) | 1; + bmax[2] = (unsigned short)(qfac * maxz + 1) | 1; + + // Traverse tree + dtPolyRef base = getPolyRefBase(tile); + int n = 0; + while (node < end) + { + const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax); + const bool isLeafNode = node->i >= 0; + + if (isLeafNode && overlap) + { + if (n < maxPolys) + polys[n++] = base | (dtPolyRef)node->i; + } + + if (overlap || isLeafNode) + node++; + else + { + const int escapeIndex = -node->i; + node += escapeIndex; + } + } + + return n; + } + else + { + float bmin[3], bmax[3]; + int n = 0; + dtPolyRef base = getPolyRefBase(tile); + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* p = &tile->polys[i]; + // Do not return off-mesh connection polygons. + if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + // Calc polygon bounds. + const float* v = &tile->verts[p->verts[0]*3]; + dtVcopy(bmin, v); + dtVcopy(bmax, v); + for (int j = 1; j < p->vertCount; ++j) + { + v = &tile->verts[p->verts[j]*3]; + dtVmin(bmin, v); + dtVmax(bmax, v); + } + if (dtOverlapBounds(qmin,qmax, bmin,bmax)) + { + if (n < maxPolys) + polys[n++] = base | (dtPolyRef)i; + } + } + return n; + } +} + +/// @par +/// +/// The add operation will fail if the data is in the wrong format, the allocated tile +/// space is full, or there is a tile already at the specified reference. +/// +/// The lastRef parameter is used to restore a tile with the same tile +/// reference it had previously used. In this case the #dtPolyRef's for the +/// tile will be restored to the same values they were before the tile was +/// removed. +/// +/// The nav mesh assumes exclusive access to the data passed and will make +/// changes to the dynamic portion of the data. For that reason the data +/// should not be reused in other nav meshes until the tile has been successfully +/// removed from this nav mesh. +/// +/// @see dtCreateNavMeshData, #removeTile +dtStatus dtNavMesh::addTile(unsigned char* data, int dataSize, int flags, + dtTileRef lastRef, dtTileRef* result) +{ + // Make sure the data is in right format. + dtMeshHeader* header = (dtMeshHeader*)data; + if (header->magic != DT_NAVMESH_MAGIC) + return DT_FAILURE | DT_WRONG_MAGIC; + if (header->version != DT_NAVMESH_VERSION) + return DT_FAILURE | DT_WRONG_VERSION; + +#ifndef DT_POLYREF64 + // Do not allow adding more polygons than specified in the NavMesh's maxPolys constraint. + // Otherwise, the poly ID cannot be represented with the given number of bits. + if (m_polyBits < dtIlog2(dtNextPow2((unsigned int)header->polyCount))) + return DT_FAILURE | DT_INVALID_PARAM; +#endif + + // Make sure the location is free. + if (getTileAt(header->x, header->y, header->layer)) + return DT_FAILURE | DT_ALREADY_OCCUPIED; + + // Allocate a tile. + dtMeshTile* tile = 0; + if (!lastRef) + { + if (m_nextFree) + { + tile = m_nextFree; + m_nextFree = tile->next; + tile->next = 0; + } + } + else + { + // Try to relocate the tile to specific index with same salt. + int tileIndex = (int)decodePolyIdTile((dtPolyRef)lastRef); + if (tileIndex >= m_maxTiles) + return DT_FAILURE | DT_OUT_OF_MEMORY; + // Try to find the specific tile id from the free list. + dtMeshTile* target = &m_tiles[tileIndex]; + dtMeshTile* prev = 0; + tile = m_nextFree; + while (tile && tile != target) + { + prev = tile; + tile = tile->next; + } + // Could not find the correct location. + if (tile != target) + return DT_FAILURE | DT_OUT_OF_MEMORY; + // Remove from freelist + if (!prev) + m_nextFree = tile->next; + else + prev->next = tile->next; + + // Restore salt. + tile->salt = decodePolyIdSalt((dtPolyRef)lastRef); + } + + // Make sure we could allocate a tile. + if (!tile) + return DT_FAILURE | DT_OUT_OF_MEMORY; + + // Insert tile into the position lut. + int h = computeTileHash(header->x, header->y, m_tileLutMask); + tile->next = m_posLookup[h]; + m_posLookup[h] = tile; + + // Patch header pointers. + const int headerSize = dtAlign4(sizeof(dtMeshHeader)); + const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount); + const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount); + const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount)); + const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount); + const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount); + const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount); + const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount); + const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount); + + unsigned char* d = data + headerSize; + tile->verts = dtGetThenAdvanceBufferPointer(d, vertsSize); + tile->polys = dtGetThenAdvanceBufferPointer(d, polysSize); + tile->links = dtGetThenAdvanceBufferPointer(d, linksSize); + tile->detailMeshes = dtGetThenAdvanceBufferPointer(d, detailMeshesSize); + tile->detailVerts = dtGetThenAdvanceBufferPointer(d, detailVertsSize); + tile->detailTris = dtGetThenAdvanceBufferPointer(d, detailTrisSize); + tile->bvTree = dtGetThenAdvanceBufferPointer(d, bvtreeSize); + tile->offMeshCons = dtGetThenAdvanceBufferPointer(d, offMeshLinksSize); + + // If there are no items in the bvtree, reset the tree pointer. + if (!bvtreeSize) + tile->bvTree = 0; + + // Build links freelist + tile->linksFreeList = 0; + tile->links[header->maxLinkCount-1].next = DT_NULL_LINK; + for (int i = 0; i < header->maxLinkCount-1; ++i) + tile->links[i].next = i+1; + + // Init tile. + tile->header = header; + tile->data = data; + tile->dataSize = dataSize; + tile->flags = flags; + + connectIntLinks(tile); + + // Base off-mesh connections to their starting polygons and connect connections inside the tile. + baseOffMeshLinks(tile); + connectExtOffMeshLinks(tile, tile, -1); + + // Create connections with neighbour tiles. + static const int MAX_NEIS = 32; + dtMeshTile* neis[MAX_NEIS]; + int nneis; + + // Connect with layers in current tile. + nneis = getTilesAt(header->x, header->y, neis, MAX_NEIS); + for (int j = 0; j < nneis; ++j) + { + if (neis[j] == tile) + continue; + + connectExtLinks(tile, neis[j], -1); + connectExtLinks(neis[j], tile, -1); + connectExtOffMeshLinks(tile, neis[j], -1); + connectExtOffMeshLinks(neis[j], tile, -1); + } + + // Connect with neighbour tiles. + for (int i = 0; i < 8; ++i) + { + nneis = getNeighbourTilesAt(header->x, header->y, i, neis, MAX_NEIS); + for (int j = 0; j < nneis; ++j) + { + connectExtLinks(tile, neis[j], i); + connectExtLinks(neis[j], tile, dtOppositeTile(i)); + connectExtOffMeshLinks(tile, neis[j], i); + connectExtOffMeshLinks(neis[j], tile, dtOppositeTile(i)); + } + } + + if (result) + *result = getTileRef(tile); + + return DT_SUCCESS; +} + +const dtMeshTile* dtNavMesh::getTileAt(const int x, const int y, const int layer) const +{ + // Find tile based on hash. + int h = computeTileHash(x,y,m_tileLutMask); + dtMeshTile* tile = m_posLookup[h]; + while (tile) + { + if (tile->header && + tile->header->x == x && + tile->header->y == y && + tile->header->layer == layer) + { + return tile; + } + tile = tile->next; + } + return 0; +} + +int dtNavMesh::getNeighbourTilesAt(const int x, const int y, const int side, dtMeshTile** tiles, const int maxTiles) const +{ + int nx = x, ny = y; + switch (side) + { + case 0: nx++; break; + case 1: nx++; ny++; break; + case 2: ny++; break; + case 3: nx--; ny++; break; + case 4: nx--; break; + case 5: nx--; ny--; break; + case 6: ny--; break; + case 7: nx++; ny--; break; + }; + + return getTilesAt(nx, ny, tiles, maxTiles); +} + +int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile** tiles, const int maxTiles) const +{ + int n = 0; + + // Find tile based on hash. + int h = computeTileHash(x,y,m_tileLutMask); + dtMeshTile* tile = m_posLookup[h]; + while (tile) + { + if (tile->header && + tile->header->x == x && + tile->header->y == y) + { + if (n < maxTiles) + tiles[n++] = tile; + } + tile = tile->next; + } + + return n; +} + +/// @par +/// +/// This function will not fail if the tiles array is too small to hold the +/// entire result set. It will simply fill the array to capacity. +int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile const** tiles, const int maxTiles) const +{ + int n = 0; + + // Find tile based on hash. + int h = computeTileHash(x,y,m_tileLutMask); + dtMeshTile* tile = m_posLookup[h]; + while (tile) + { + if (tile->header && + tile->header->x == x && + tile->header->y == y) + { + if (n < maxTiles) + tiles[n++] = tile; + } + tile = tile->next; + } + + return n; +} + + +dtTileRef dtNavMesh::getTileRefAt(const int x, const int y, const int layer) const +{ + // Find tile based on hash. + int h = computeTileHash(x,y,m_tileLutMask); + dtMeshTile* tile = m_posLookup[h]; + while (tile) + { + if (tile->header && + tile->header->x == x && + tile->header->y == y && + tile->header->layer == layer) + { + return getTileRef(tile); + } + tile = tile->next; + } + return 0; +} + +const dtMeshTile* dtNavMesh::getTileByRef(dtTileRef ref) const +{ + if (!ref) + return 0; + unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref); + unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref); + if ((int)tileIndex >= m_maxTiles) + return 0; + const dtMeshTile* tile = &m_tiles[tileIndex]; + if (tile->salt != tileSalt) + return 0; + return tile; +} + +int dtNavMesh::getMaxTiles() const +{ + return m_maxTiles; +} + +dtMeshTile* dtNavMesh::getTile(int i) +{ + return &m_tiles[i]; +} + +const dtMeshTile* dtNavMesh::getTile(int i) const +{ + return &m_tiles[i]; +} + +void dtNavMesh::calcTileLoc(const float* pos, int* tx, int* ty) const +{ + *tx = (int)floorf((pos[0]-m_orig[0]) / m_tileWidth); + *ty = (int)floorf((pos[2]-m_orig[2]) / m_tileHeight); +} + +dtStatus dtNavMesh::getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const +{ + if (!ref) return DT_FAILURE; + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; + if (ip >= (unsigned int)m_tiles[it].header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; + *tile = &m_tiles[it]; + *poly = &m_tiles[it].polys[ip]; + return DT_SUCCESS; +} + +/// @par +/// +/// @warning Only use this function if it is known that the provided polygon +/// reference is valid. This function is faster than #getTileAndPolyByRef, but +/// it does not validate the reference. +void dtNavMesh::getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const +{ + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + *tile = &m_tiles[it]; + *poly = &m_tiles[it].polys[ip]; +} + +bool dtNavMesh::isValidPolyRef(dtPolyRef ref) const +{ + if (!ref) return false; + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return false; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; + if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false; + return true; +} + +/// @par +/// +/// This function returns the data for the tile so that, if desired, +/// it can be added back to the navigation mesh at a later point. +/// +/// @see #addTile +dtStatus dtNavMesh::removeTile(dtTileRef ref, unsigned char** data, int* dataSize) +{ + if (!ref) + return DT_FAILURE | DT_INVALID_PARAM; + unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref); + unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref); + if ((int)tileIndex >= m_maxTiles) + return DT_FAILURE | DT_INVALID_PARAM; + dtMeshTile* tile = &m_tiles[tileIndex]; + if (tile->salt != tileSalt) + return DT_FAILURE | DT_INVALID_PARAM; + + // Remove tile from hash lookup. + int h = computeTileHash(tile->header->x,tile->header->y,m_tileLutMask); + dtMeshTile* prev = 0; + dtMeshTile* cur = m_posLookup[h]; + while (cur) + { + if (cur == tile) + { + if (prev) + prev->next = cur->next; + else + m_posLookup[h] = cur->next; + break; + } + prev = cur; + cur = cur->next; + } + + // Remove connections to neighbour tiles. + static const int MAX_NEIS = 32; + dtMeshTile* neis[MAX_NEIS]; + int nneis; + + // Disconnect from other layers in current tile. + nneis = getTilesAt(tile->header->x, tile->header->y, neis, MAX_NEIS); + for (int j = 0; j < nneis; ++j) + { + if (neis[j] == tile) continue; + unconnectLinks(neis[j], tile); + } + + // Disconnect from neighbour tiles. + for (int i = 0; i < 8; ++i) + { + nneis = getNeighbourTilesAt(tile->header->x, tile->header->y, i, neis, MAX_NEIS); + for (int j = 0; j < nneis; ++j) + unconnectLinks(neis[j], tile); + } + + // Reset tile. + if (tile->flags & DT_TILE_FREE_DATA) + { + // Owns data + dtFree(tile->data); + tile->data = 0; + tile->dataSize = 0; + if (data) *data = 0; + if (dataSize) *dataSize = 0; + } + else + { + if (data) *data = tile->data; + if (dataSize) *dataSize = tile->dataSize; + } + + tile->header = 0; + tile->flags = 0; + tile->linksFreeList = 0; + tile->polys = 0; + tile->verts = 0; + tile->links = 0; + tile->detailMeshes = 0; + tile->detailVerts = 0; + tile->detailTris = 0; + tile->bvTree = 0; + tile->offMeshCons = 0; + + // Update salt, salt should never be zero. +#ifdef DT_POLYREF64 + tile->salt = (tile->salt+1) & ((1<salt = (tile->salt+1) & ((1<salt == 0) + tile->salt++; + + // Add to free list. + tile->next = m_nextFree; + m_nextFree = tile; + + return DT_SUCCESS; +} + +dtTileRef dtNavMesh::getTileRef(const dtMeshTile* tile) const +{ + if (!tile) return 0; + const unsigned int it = (unsigned int)(tile - m_tiles); + return (dtTileRef)encodePolyId(tile->salt, it, 0); +} + +/// @par +/// +/// Example use case: +/// @code +/// +/// const dtPolyRef base = navmesh->getPolyRefBase(tile); +/// for (int i = 0; i < tile->header->polyCount; ++i) +/// { +/// const dtPoly* p = &tile->polys[i]; +/// const dtPolyRef ref = base | (dtPolyRef)i; +/// +/// // Use the reference to access the polygon data. +/// } +/// @endcode +dtPolyRef dtNavMesh::getPolyRefBase(const dtMeshTile* tile) const +{ + if (!tile) return 0; + const unsigned int it = (unsigned int)(tile - m_tiles); + return encodePolyId(tile->salt, it, 0); +} + +struct dtTileState +{ + int magic; // Magic number, used to identify the data. + int version; // Data version number. + dtTileRef ref; // Tile ref at the time of storing the data. +}; + +struct dtPolyState +{ + unsigned short flags; // Flags (see dtPolyFlags). + unsigned char area; // Area ID of the polygon. +}; + +/// @see #storeTileState +int dtNavMesh::getTileStateSize(const dtMeshTile* tile) const +{ + if (!tile) return 0; + const int headerSize = dtAlign4(sizeof(dtTileState)); + const int polyStateSize = dtAlign4(sizeof(dtPolyState) * tile->header->polyCount); + return headerSize + polyStateSize; +} + +/// @par +/// +/// Tile state includes non-structural data such as polygon flags, area ids, etc. +/// @note The state data is only valid until the tile reference changes. +/// @see #getTileStateSize, #restoreTileState +dtStatus dtNavMesh::storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const +{ + // Make sure there is enough space to store the state. + const int sizeReq = getTileStateSize(tile); + if (maxDataSize < sizeReq) + return DT_FAILURE | DT_BUFFER_TOO_SMALL; + + dtTileState* tileState = dtGetThenAdvanceBufferPointer(data, dtAlign4(sizeof(dtTileState))); + dtPolyState* polyStates = dtGetThenAdvanceBufferPointer(data, dtAlign4(sizeof(dtPolyState) * tile->header->polyCount)); + + // Store tile state. + tileState->magic = DT_NAVMESH_STATE_MAGIC; + tileState->version = DT_NAVMESH_STATE_VERSION; + tileState->ref = getTileRef(tile); + + // Store per poly state. + for (int i = 0; i < tile->header->polyCount; ++i) + { + const dtPoly* p = &tile->polys[i]; + dtPolyState* s = &polyStates[i]; + s->flags = p->flags; + s->area = p->getArea(); + } + + return DT_SUCCESS; +} + +/// @par +/// +/// Tile state includes non-structural data such as polygon flags, area ids, etc. +/// @note This function does not impact the tile's #dtTileRef and #dtPolyRef's. +/// @see #storeTileState +dtStatus dtNavMesh::restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize) +{ + // Make sure there is enough space to store the state. + const int sizeReq = getTileStateSize(tile); + if (maxDataSize < sizeReq) + return DT_FAILURE | DT_INVALID_PARAM; + + const dtTileState* tileState = dtGetThenAdvanceBufferPointer(data, dtAlign4(sizeof(dtTileState))); + const dtPolyState* polyStates = dtGetThenAdvanceBufferPointer(data, dtAlign4(sizeof(dtPolyState) * tile->header->polyCount)); + + // Check that the restore is possible. + if (tileState->magic != DT_NAVMESH_STATE_MAGIC) + return DT_FAILURE | DT_WRONG_MAGIC; + if (tileState->version != DT_NAVMESH_STATE_VERSION) + return DT_FAILURE | DT_WRONG_VERSION; + if (tileState->ref != getTileRef(tile)) + return DT_FAILURE | DT_INVALID_PARAM; + + // Restore per poly state. + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* p = &tile->polys[i]; + const dtPolyState* s = &polyStates[i]; + p->flags = s->flags; + p->setArea(s->area); + } + + return DT_SUCCESS; +} + +/// @par +/// +/// Off-mesh connections are stored in the navigation mesh as special 2-vertex +/// polygons with a single edge. At least one of the vertices is expected to be +/// inside a normal polygon. So an off-mesh connection is "entered" from a +/// normal polygon at one of its endpoints. This is the polygon identified by +/// the prevRef parameter. +dtStatus dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const +{ + unsigned int salt, it, ip; + + if (!polyRef) + return DT_FAILURE; + + // Get current polygon + decodePolyId(polyRef, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; + const dtMeshTile* tile = &m_tiles[it]; + if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; + const dtPoly* poly = &tile->polys[ip]; + + // Make sure that the current poly is indeed off-mesh link. + if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION) + return DT_FAILURE; + + // Figure out which way to hand out the vertices. + int idx0 = 0, idx1 = 1; + + // Find link that points to first vertex. + for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next) + { + if (tile->links[i].edge == 0) + { + if (tile->links[i].ref != prevRef) + { + idx0 = 1; + idx1 = 0; + } + break; + } + } + + dtVcopy(startPos, &tile->verts[poly->verts[idx0]*3]); + dtVcopy(endPos, &tile->verts[poly->verts[idx1]*3]); + + return DT_SUCCESS; +} + + +const dtOffMeshConnection* dtNavMesh::getOffMeshConnectionByRef(dtPolyRef ref) const +{ + unsigned int salt, it, ip; + + if (!ref) + return 0; + + // Get current polygon + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return 0; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; + const dtMeshTile* tile = &m_tiles[it]; + if (ip >= (unsigned int)tile->header->polyCount) return 0; + const dtPoly* poly = &tile->polys[ip]; + + // Make sure that the current poly is indeed off-mesh link. + if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION) + return 0; + + const unsigned int idx = ip - tile->header->offMeshBase; + dtAssert(idx < (unsigned int)tile->header->offMeshConCount); + return &tile->offMeshCons[idx]; +} + + +dtStatus dtNavMesh::setPolyFlags(dtPolyRef ref, unsigned short flags) +{ + if (!ref) return DT_FAILURE; + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; + dtMeshTile* tile = &m_tiles[it]; + if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; + dtPoly* poly = &tile->polys[ip]; + + // Change flags. + poly->flags = flags; + + return DT_SUCCESS; +} + +dtStatus dtNavMesh::getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const +{ + if (!ref) return DT_FAILURE; + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; + const dtMeshTile* tile = &m_tiles[it]; + if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; + const dtPoly* poly = &tile->polys[ip]; + + *resultFlags = poly->flags; + + return DT_SUCCESS; +} + +dtStatus dtNavMesh::setPolyArea(dtPolyRef ref, unsigned char area) +{ + if (!ref) return DT_FAILURE; + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; + dtMeshTile* tile = &m_tiles[it]; + if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; + dtPoly* poly = &tile->polys[ip]; + + poly->setArea(area); + + return DT_SUCCESS; +} + +dtStatus dtNavMesh::getPolyArea(dtPolyRef ref, unsigned char* resultArea) const +{ + if (!ref) return DT_FAILURE; + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; + const dtMeshTile* tile = &m_tiles[it]; + if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; + const dtPoly* poly = &tile->polys[ip]; + + *resultArea = poly->getArea(); + + return DT_SUCCESS; +} + diff --git a/Pathing/Detour/Source/DetourNavMeshBuilder.cpp b/Pathing/Detour/Source/DetourNavMeshBuilder.cpp new file mode 100644 index 0000000000..e93a97629b --- /dev/null +++ b/Pathing/Detour/Source/DetourNavMeshBuilder.cpp @@ -0,0 +1,802 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include +#include +#include +#include +#include "DetourNavMesh.h" +#include "DetourCommon.h" +#include "DetourMath.h" +#include "DetourNavMeshBuilder.h" +#include "DetourAlloc.h" +#include "DetourAssert.h" + +static unsigned short MESH_NULL_IDX = 0xffff; + + +struct BVItem +{ + unsigned short bmin[3]; + unsigned short bmax[3]; + int i; +}; + +static int compareItemX(const void* va, const void* vb) +{ + const BVItem* a = (const BVItem*)va; + const BVItem* b = (const BVItem*)vb; + if (a->bmin[0] < b->bmin[0]) + return -1; + if (a->bmin[0] > b->bmin[0]) + return 1; + return 0; +} + +static int compareItemY(const void* va, const void* vb) +{ + const BVItem* a = (const BVItem*)va; + const BVItem* b = (const BVItem*)vb; + if (a->bmin[1] < b->bmin[1]) + return -1; + if (a->bmin[1] > b->bmin[1]) + return 1; + return 0; +} + +static int compareItemZ(const void* va, const void* vb) +{ + const BVItem* a = (const BVItem*)va; + const BVItem* b = (const BVItem*)vb; + if (a->bmin[2] < b->bmin[2]) + return -1; + if (a->bmin[2] > b->bmin[2]) + return 1; + return 0; +} + +static void calcExtends(BVItem* items, const int /*nitems*/, const int imin, const int imax, + unsigned short* bmin, unsigned short* bmax) +{ + bmin[0] = items[imin].bmin[0]; + bmin[1] = items[imin].bmin[1]; + bmin[2] = items[imin].bmin[2]; + + bmax[0] = items[imin].bmax[0]; + bmax[1] = items[imin].bmax[1]; + bmax[2] = items[imin].bmax[2]; + + for (int i = imin+1; i < imax; ++i) + { + const BVItem& it = items[i]; + if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0]; + if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1]; + if (it.bmin[2] < bmin[2]) bmin[2] = it.bmin[2]; + + if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0]; + if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1]; + if (it.bmax[2] > bmax[2]) bmax[2] = it.bmax[2]; + } +} + +inline int longestAxis(unsigned short x, unsigned short y, unsigned short z) +{ + int axis = 0; + unsigned short maxVal = x; + if (y > maxVal) + { + axis = 1; + maxVal = y; + } + if (z > maxVal) + { + axis = 2; + } + return axis; +} + +static void subdivide(BVItem* items, int nitems, int imin, int imax, int& curNode, dtBVNode* nodes) +{ + int inum = imax - imin; + int icur = curNode; + + dtBVNode& node = nodes[curNode++]; + + if (inum == 1) + { + // Leaf + node.bmin[0] = items[imin].bmin[0]; + node.bmin[1] = items[imin].bmin[1]; + node.bmin[2] = items[imin].bmin[2]; + + node.bmax[0] = items[imin].bmax[0]; + node.bmax[1] = items[imin].bmax[1]; + node.bmax[2] = items[imin].bmax[2]; + + node.i = items[imin].i; + } + else + { + // Split + calcExtends(items, nitems, imin, imax, node.bmin, node.bmax); + + int axis = longestAxis(node.bmax[0] - node.bmin[0], + node.bmax[1] - node.bmin[1], + node.bmax[2] - node.bmin[2]); + + if (axis == 0) + { + // Sort along x-axis + qsort(items+imin, inum, sizeof(BVItem), compareItemX); + } + else if (axis == 1) + { + // Sort along y-axis + qsort(items+imin, inum, sizeof(BVItem), compareItemY); + } + else + { + // Sort along z-axis + qsort(items+imin, inum, sizeof(BVItem), compareItemZ); + } + + int isplit = imin+inum/2; + + // Left + subdivide(items, nitems, imin, isplit, curNode, nodes); + // Right + subdivide(items, nitems, isplit, imax, curNode, nodes); + + int iescape = curNode - icur; + // Negative index means escape. + node.i = -iescape; + } +} + +static int createBVTree(dtNavMeshCreateParams* params, dtBVNode* nodes, int /*nnodes*/) +{ + // Build tree + float quantFactor = 1 / params->cs; + BVItem* items = (BVItem*)dtAlloc(sizeof(BVItem)*params->polyCount, DT_ALLOC_TEMP); + for (int i = 0; i < params->polyCount; i++) + { + BVItem& it = items[i]; + it.i = i; + // Calc polygon bounds. Use detail meshes if available. + if (params->detailMeshes) + { + int vb = (int)params->detailMeshes[i*4+0]; + int ndv = (int)params->detailMeshes[i*4+1]; + float bmin[3]; + float bmax[3]; + + const float* dv = ¶ms->detailVerts[vb*3]; + dtVcopy(bmin, dv); + dtVcopy(bmax, dv); + + for (int j = 1; j < ndv; j++) + { + dtVmin(bmin, &dv[j * 3]); + dtVmax(bmax, &dv[j * 3]); + } + + // BV-tree uses cs for all dimensions + it.bmin[0] = (unsigned short)dtClamp((int)((bmin[0] - params->bmin[0])*quantFactor), 0, 0xffff); + it.bmin[1] = (unsigned short)dtClamp((int)((bmin[1] - params->bmin[1])*quantFactor), 0, 0xffff); + it.bmin[2] = (unsigned short)dtClamp((int)((bmin[2] - params->bmin[2])*quantFactor), 0, 0xffff); + + it.bmax[0] = (unsigned short)dtClamp((int)((bmax[0] - params->bmin[0])*quantFactor), 0, 0xffff); + it.bmax[1] = (unsigned short)dtClamp((int)((bmax[1] - params->bmin[1])*quantFactor), 0, 0xffff); + it.bmax[2] = (unsigned short)dtClamp((int)((bmax[2] - params->bmin[2])*quantFactor), 0, 0xffff); + } + else + { + const unsigned short* p = ¶ms->polys[i*params->nvp * 2]; + it.bmin[0] = it.bmax[0] = params->verts[p[0] * 3 + 0]; + it.bmin[1] = it.bmax[1] = params->verts[p[0] * 3 + 1]; + it.bmin[2] = it.bmax[2] = params->verts[p[0] * 3 + 2]; + + for (int j = 1; j < params->nvp; ++j) + { + if (p[j] == MESH_NULL_IDX) break; + unsigned short x = params->verts[p[j] * 3 + 0]; + unsigned short y = params->verts[p[j] * 3 + 1]; + unsigned short z = params->verts[p[j] * 3 + 2]; + + if (x < it.bmin[0]) it.bmin[0] = x; + if (y < it.bmin[1]) it.bmin[1] = y; + if (z < it.bmin[2]) it.bmin[2] = z; + + if (x > it.bmax[0]) it.bmax[0] = x; + if (y > it.bmax[1]) it.bmax[1] = y; + if (z > it.bmax[2]) it.bmax[2] = z; + } + // Remap y + it.bmin[1] = (unsigned short)dtMathFloorf((float)it.bmin[1] * params->ch / params->cs); + it.bmax[1] = (unsigned short)dtMathCeilf((float)it.bmax[1] * params->ch / params->cs); + } + } + + int curNode = 0; + subdivide(items, params->polyCount, 0, params->polyCount, curNode, nodes); + + dtFree(items); + + return curNode; +} + +static unsigned char classifyOffMeshPoint(const float* pt, const float* bmin, const float* bmax) +{ + static const unsigned char XP = 1<<0; + static const unsigned char ZP = 1<<1; + static const unsigned char XM = 1<<2; + static const unsigned char ZM = 1<<3; + + unsigned char outcode = 0; + outcode |= (pt[0] >= bmax[0]) ? XP : 0; + outcode |= (pt[2] >= bmax[2]) ? ZP : 0; + outcode |= (pt[0] < bmin[0]) ? XM : 0; + outcode |= (pt[2] < bmin[2]) ? ZM : 0; + + switch (outcode) + { + case XP: return 0; + case XP|ZP: return 1; + case ZP: return 2; + case XM|ZP: return 3; + case XM: return 4; + case XM|ZM: return 5; + case ZM: return 6; + case XP|ZM: return 7; + }; + + return 0xff; +} + +// TODO: Better error handling. + +/// @par +/// +/// The output data array is allocated using the detour allocator (dtAlloc()). The method +/// used to free the memory will be determined by how the tile is added to the navigation +/// mesh. +/// +/// @see dtNavMesh, dtNavMesh::addTile() +bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize) +{ + if (params->nvp > DT_VERTS_PER_POLYGON) + return false; + if (params->vertCount >= 0xffff) + return false; + if (!params->vertCount || !params->verts) + return false; + if (!params->polyCount || !params->polys) + return false; + + const int nvp = params->nvp; + + // Classify off-mesh connection points. We store only the connections + // whose start point is inside the tile. + unsigned char* offMeshConClass = 0; + int storedOffMeshConCount = 0; + int offMeshConLinkCount = 0; + + if (params->offMeshConCount > 0) + { + offMeshConClass = (unsigned char*)dtAlloc(sizeof(unsigned char)*params->offMeshConCount*2, DT_ALLOC_TEMP); + if (!offMeshConClass) + return false; + + // Find tight heigh bounds, used for culling out off-mesh start locations. + float hmin = FLT_MAX; + float hmax = -FLT_MAX; + + if (params->detailVerts && params->detailVertsCount) + { + for (int i = 0; i < params->detailVertsCount; ++i) + { + const float h = params->detailVerts[i*3+1]; + hmin = dtMin(hmin,h); + hmax = dtMax(hmax,h); + } + } + else + { + for (int i = 0; i < params->vertCount; ++i) + { + const unsigned short* iv = ¶ms->verts[i*3]; + const float h = params->bmin[1] + iv[1] * params->ch; + hmin = dtMin(hmin,h); + hmax = dtMax(hmax,h); + } + } + hmin -= params->walkableClimb; + hmax += params->walkableClimb; + float bmin[3], bmax[3]; + dtVcopy(bmin, params->bmin); + dtVcopy(bmax, params->bmax); + bmin[1] = hmin; + bmax[1] = hmax; + + for (int i = 0; i < params->offMeshConCount; ++i) + { + const float* p0 = ¶ms->offMeshConVerts[(i*2+0)*3]; + const float* p1 = ¶ms->offMeshConVerts[(i*2+1)*3]; + offMeshConClass[i*2+0] = classifyOffMeshPoint(p0, bmin, bmax); + offMeshConClass[i*2+1] = classifyOffMeshPoint(p1, bmin, bmax); + + // Zero out off-mesh start positions which are not even potentially touching the mesh. + if (offMeshConClass[i*2+0] == 0xff) + { + if (p0[1] < bmin[1] || p0[1] > bmax[1]) + offMeshConClass[i*2+0] = 0; + } + + // Cound how many links should be allocated for off-mesh connections. + if (offMeshConClass[i*2+0] == 0xff) + offMeshConLinkCount++; + if (offMeshConClass[i*2+1] == 0xff) + offMeshConLinkCount++; + + if (offMeshConClass[i*2+0] == 0xff) + storedOffMeshConCount++; + } + } + + // Off-mesh connectionss are stored as polygons, adjust values. + const int totPolyCount = params->polyCount + storedOffMeshConCount; + const int totVertCount = params->vertCount + storedOffMeshConCount*2; + + // Find portal edges which are at tile borders. + int edgeCount = 0; + int portalCount = 0; + for (int i = 0; i < params->polyCount; ++i) + { + const unsigned short* p = ¶ms->polys[i*2*nvp]; + for (int j = 0; j < nvp; ++j) + { + if (p[j] == MESH_NULL_IDX) break; + edgeCount++; + + if (p[nvp+j] & 0x8000) + { + unsigned short dir = p[nvp+j] & 0xf; + if (dir != 0xf) + portalCount++; + } + } + } + + const int maxLinkCount = edgeCount + portalCount*2 + offMeshConLinkCount*2; + + // Find unique detail vertices. + int uniqueDetailVertCount = 0; + int detailTriCount = 0; + if (params->detailMeshes) + { + // Has detail mesh, count unique detail vertex count and use input detail tri count. + detailTriCount = params->detailTriCount; + for (int i = 0; i < params->polyCount; ++i) + { + const unsigned short* p = ¶ms->polys[i*nvp*2]; + int ndv = params->detailMeshes[i*4+1]; + int nv = 0; + for (int j = 0; j < nvp; ++j) + { + if (p[j] == MESH_NULL_IDX) break; + nv++; + } + ndv -= nv; + uniqueDetailVertCount += ndv; + } + } + else + { + // No input detail mesh, build detail mesh from nav polys. + uniqueDetailVertCount = 0; // No extra detail verts. + detailTriCount = 0; + for (int i = 0; i < params->polyCount; ++i) + { + const unsigned short* p = ¶ms->polys[i*nvp*2]; + int nv = 0; + for (int j = 0; j < nvp; ++j) + { + if (p[j] == MESH_NULL_IDX) break; + nv++; + } + detailTriCount += nv-2; + } + } + + // Calculate data size + const int headerSize = dtAlign4(sizeof(dtMeshHeader)); + const int vertsSize = dtAlign4(sizeof(float)*3*totVertCount); + const int polysSize = dtAlign4(sizeof(dtPoly)*totPolyCount); + const int linksSize = dtAlign4(sizeof(dtLink)*maxLinkCount); + const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*params->polyCount); + const int detailVertsSize = dtAlign4(sizeof(float)*3*uniqueDetailVertCount); + const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*detailTriCount); + const int bvTreeSize = params->buildBvTree ? dtAlign4(sizeof(dtBVNode)*params->polyCount*2) : 0; + const int offMeshConsSize = dtAlign4(sizeof(dtOffMeshConnection)*storedOffMeshConCount); + + const int dataSize = headerSize + vertsSize + polysSize + linksSize + + detailMeshesSize + detailVertsSize + detailTrisSize + + bvTreeSize + offMeshConsSize; + + unsigned char* data = (unsigned char*)dtAlloc(sizeof(unsigned char)*dataSize, DT_ALLOC_PERM); + if (!data) + { + dtFree(offMeshConClass); + return false; + } + memset(data, 0, dataSize); + + unsigned char* d = data; + + dtMeshHeader* header = dtGetThenAdvanceBufferPointer(d, headerSize); + float* navVerts = dtGetThenAdvanceBufferPointer(d, vertsSize); + dtPoly* navPolys = dtGetThenAdvanceBufferPointer(d, polysSize); + d += linksSize; // Ignore links; just leave enough space for them. They'll be created on load. + dtPolyDetail* navDMeshes = dtGetThenAdvanceBufferPointer(d, detailMeshesSize); + float* navDVerts = dtGetThenAdvanceBufferPointer(d, detailVertsSize); + unsigned char* navDTris = dtGetThenAdvanceBufferPointer(d, detailTrisSize); + dtBVNode* navBvtree = dtGetThenAdvanceBufferPointer(d, bvTreeSize); + dtOffMeshConnection* offMeshCons = dtGetThenAdvanceBufferPointer(d, offMeshConsSize); + + + // Store header + header->magic = DT_NAVMESH_MAGIC; + header->version = DT_NAVMESH_VERSION; + header->x = params->tileX; + header->y = params->tileY; + header->layer = params->tileLayer; + header->userId = params->userId; + header->polyCount = totPolyCount; + header->vertCount = totVertCount; + header->maxLinkCount = maxLinkCount; + dtVcopy(header->bmin, params->bmin); + dtVcopy(header->bmax, params->bmax); + header->detailMeshCount = params->polyCount; + header->detailVertCount = uniqueDetailVertCount; + header->detailTriCount = detailTriCount; + header->bvQuantFactor = 1.0f / params->cs; + header->offMeshBase = params->polyCount; + header->walkableHeight = params->walkableHeight; + header->walkableRadius = params->walkableRadius; + header->walkableClimb = params->walkableClimb; + header->offMeshConCount = storedOffMeshConCount; + header->bvNodeCount = params->buildBvTree ? params->polyCount*2 : 0; + + const int offMeshVertsBase = params->vertCount; + const int offMeshPolyBase = params->polyCount; + + // Store vertices + // Mesh vertices + for (int i = 0; i < params->vertCount; ++i) + { + const unsigned short* iv = ¶ms->verts[i*3]; + float* v = &navVerts[i*3]; + v[0] = params->bmin[0] + iv[0] * params->cs; + v[1] = params->bmin[1] + iv[1] * params->ch; + v[2] = params->bmin[2] + iv[2] * params->cs; + } + // Off-mesh link vertices. + int n = 0; + for (int i = 0; i < params->offMeshConCount; ++i) + { + // Only store connections which start from this tile. + if (offMeshConClass[i*2+0] == 0xff) + { + const float* linkv = ¶ms->offMeshConVerts[i*2*3]; + float* v = &navVerts[(offMeshVertsBase + n*2)*3]; + dtVcopy(&v[0], &linkv[0]); + dtVcopy(&v[3], &linkv[3]); + n++; + } + } + + // Store polygons + // Mesh polys + const unsigned short* src = params->polys; + for (int i = 0; i < params->polyCount; ++i) + { + dtPoly* p = &navPolys[i]; + p->vertCount = 0; + p->flags = params->polyFlags[i]; + p->setArea(params->polyAreas[i]); + p->setType(DT_POLYTYPE_GROUND); + for (int j = 0; j < nvp; ++j) + { + if (src[j] == MESH_NULL_IDX) break; + p->verts[j] = src[j]; + if (src[nvp+j] & 0x8000) + { + // Border or portal edge. + unsigned short dir = src[nvp+j] & 0xf; + if (dir == 0xf) // Border + p->neis[j] = 0; + else if (dir == 0) // Portal x- + p->neis[j] = DT_EXT_LINK | 4; + else if (dir == 1) // Portal z+ + p->neis[j] = DT_EXT_LINK | 2; + else if (dir == 2) // Portal x+ + p->neis[j] = DT_EXT_LINK | 0; + else if (dir == 3) // Portal z- + p->neis[j] = DT_EXT_LINK | 6; + } + else + { + // Normal connection + p->neis[j] = src[nvp+j]+1; + } + + p->vertCount++; + } + src += nvp*2; + } + // Off-mesh connection vertices. + n = 0; + for (int i = 0; i < params->offMeshConCount; ++i) + { + // Only store connections which start from this tile. + if (offMeshConClass[i*2+0] == 0xff) + { + dtPoly* p = &navPolys[offMeshPolyBase+n]; + p->vertCount = 2; + p->verts[0] = (unsigned short)(offMeshVertsBase + n*2+0); + p->verts[1] = (unsigned short)(offMeshVertsBase + n*2+1); + p->flags = params->offMeshConFlags[i]; + p->setArea(params->offMeshConAreas[i]); + p->setType(DT_POLYTYPE_OFFMESH_CONNECTION); + n++; + } + } + + // Store detail meshes and vertices. + // The nav polygon vertices are stored as the first vertices on each mesh. + // We compress the mesh data by skipping them and using the navmesh coordinates. + if (params->detailMeshes) + { + unsigned short vbase = 0; + for (int i = 0; i < params->polyCount; ++i) + { + dtPolyDetail& dtl = navDMeshes[i]; + const int vb = (int)params->detailMeshes[i*4+0]; + const int ndv = (int)params->detailMeshes[i*4+1]; + const int nv = navPolys[i].vertCount; + dtl.vertBase = (unsigned int)vbase; + dtl.vertCount = (unsigned char)(ndv-nv); + dtl.triBase = (unsigned int)params->detailMeshes[i*4+2]; + dtl.triCount = (unsigned char)params->detailMeshes[i*4+3]; + // Copy vertices except the first 'nv' verts which are equal to nav poly verts. + if (ndv-nv) + { + memcpy(&navDVerts[vbase*3], ¶ms->detailVerts[(vb+nv)*3], sizeof(float)*3*(ndv-nv)); + vbase += (unsigned short)(ndv-nv); + } + } + // Store triangles. + memcpy(navDTris, params->detailTris, sizeof(unsigned char)*4*params->detailTriCount); + } + else + { + // Create dummy detail mesh by triangulating polys. + int tbase = 0; + for (int i = 0; i < params->polyCount; ++i) + { + dtPolyDetail& dtl = navDMeshes[i]; + const int nv = navPolys[i].vertCount; + dtl.vertBase = 0; + dtl.vertCount = 0; + dtl.triBase = (unsigned int)tbase; + dtl.triCount = (unsigned char)(nv-2); + // Triangulate polygon (local indices). + for (int j = 2; j < nv; ++j) + { + unsigned char* t = &navDTris[tbase*4]; + t[0] = 0; + t[1] = (unsigned char)(j-1); + t[2] = (unsigned char)j; + // Bit for each edge that belongs to poly boundary. + t[3] = (1<<2); + if (j == 2) t[3] |= (1<<0); + if (j == nv-1) t[3] |= (1<<4); + tbase++; + } + } + } + + // Store and create BVtree. + if (params->buildBvTree) + { + createBVTree(params, navBvtree, 2*params->polyCount); + } + + // Store Off-Mesh connections. + n = 0; + for (int i = 0; i < params->offMeshConCount; ++i) + { + // Only store connections which start from this tile. + if (offMeshConClass[i*2+0] == 0xff) + { + dtOffMeshConnection* con = &offMeshCons[n]; + con->poly = (unsigned short)(offMeshPolyBase + n); + // Copy connection end-points. + const float* endPts = ¶ms->offMeshConVerts[i*2*3]; + dtVcopy(&con->pos[0], &endPts[0]); + dtVcopy(&con->pos[3], &endPts[3]); + con->rad = params->offMeshConRad[i]; + con->flags = params->offMeshConDir[i] ? DT_OFFMESH_CON_BIDIR : 0; + con->side = offMeshConClass[i*2+1]; + if (params->offMeshConUserID) + con->userId = params->offMeshConUserID[i]; + n++; + } + } + + dtFree(offMeshConClass); + + *outData = data; + *outDataSize = dataSize; + + return true; +} + +bool dtNavMeshHeaderSwapEndian(unsigned char* data, const int /*dataSize*/) +{ + dtMeshHeader* header = (dtMeshHeader*)data; + + int swappedMagic = DT_NAVMESH_MAGIC; + int swappedVersion = DT_NAVMESH_VERSION; + dtSwapEndian(&swappedMagic); + dtSwapEndian(&swappedVersion); + + if ((header->magic != DT_NAVMESH_MAGIC || header->version != DT_NAVMESH_VERSION) && + (header->magic != swappedMagic || header->version != swappedVersion)) + { + return false; + } + + dtSwapEndian(&header->magic); + dtSwapEndian(&header->version); + dtSwapEndian(&header->x); + dtSwapEndian(&header->y); + dtSwapEndian(&header->layer); + dtSwapEndian(&header->userId); + dtSwapEndian(&header->polyCount); + dtSwapEndian(&header->vertCount); + dtSwapEndian(&header->maxLinkCount); + dtSwapEndian(&header->detailMeshCount); + dtSwapEndian(&header->detailVertCount); + dtSwapEndian(&header->detailTriCount); + dtSwapEndian(&header->bvNodeCount); + dtSwapEndian(&header->offMeshConCount); + dtSwapEndian(&header->offMeshBase); + dtSwapEndian(&header->walkableHeight); + dtSwapEndian(&header->walkableRadius); + dtSwapEndian(&header->walkableClimb); + dtSwapEndian(&header->bmin[0]); + dtSwapEndian(&header->bmin[1]); + dtSwapEndian(&header->bmin[2]); + dtSwapEndian(&header->bmax[0]); + dtSwapEndian(&header->bmax[1]); + dtSwapEndian(&header->bmax[2]); + dtSwapEndian(&header->bvQuantFactor); + + // Freelist index and pointers are updated when tile is added, no need to swap. + + return true; +} + +/// @par +/// +/// @warning This function assumes that the header is in the correct endianess already. +/// Call #dtNavMeshHeaderSwapEndian() first on the data if the data is expected to be in wrong endianess +/// to start with. Call #dtNavMeshHeaderSwapEndian() after the data has been swapped if converting from +/// native to foreign endianess. +bool dtNavMeshDataSwapEndian(unsigned char* data, const int /*dataSize*/) +{ + // Make sure the data is in right format. + dtMeshHeader* header = (dtMeshHeader*)data; + if (header->magic != DT_NAVMESH_MAGIC) + return false; + if (header->version != DT_NAVMESH_VERSION) + return false; + + // Patch header pointers. + const int headerSize = dtAlign4(sizeof(dtMeshHeader)); + const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount); + const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount); + const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount)); + const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount); + const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount); + const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount); + const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount); + const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount); + + unsigned char* d = data + headerSize; + float* verts = dtGetThenAdvanceBufferPointer(d, vertsSize); + dtPoly* polys = dtGetThenAdvanceBufferPointer(d, polysSize); + d += linksSize; // Ignore links; they technically should be endian-swapped but all their data is overwritten on load anyway. + //dtLink* links = dtGetThenAdvanceBufferPointer(d, linksSize); + dtPolyDetail* detailMeshes = dtGetThenAdvanceBufferPointer(d, detailMeshesSize); + float* detailVerts = dtGetThenAdvanceBufferPointer(d, detailVertsSize); + d += detailTrisSize; // Ignore detail tris; single bytes can't be endian-swapped. + //unsigned char* detailTris = dtGetThenAdvanceBufferPointer(d, detailTrisSize); + dtBVNode* bvTree = dtGetThenAdvanceBufferPointer(d, bvtreeSize); + dtOffMeshConnection* offMeshCons = dtGetThenAdvanceBufferPointer(d, offMeshLinksSize); + + // Vertices + for (int i = 0; i < header->vertCount*3; ++i) + { + dtSwapEndian(&verts[i]); + } + + // Polys + for (int i = 0; i < header->polyCount; ++i) + { + dtPoly* p = &polys[i]; + // poly->firstLink is update when tile is added, no need to swap. + for (int j = 0; j < DT_VERTS_PER_POLYGON; ++j) + { + dtSwapEndian(&p->verts[j]); + dtSwapEndian(&p->neis[j]); + } + dtSwapEndian(&p->flags); + } + + // Links are rebuild when tile is added, no need to swap. + + // Detail meshes + for (int i = 0; i < header->detailMeshCount; ++i) + { + dtPolyDetail* pd = &detailMeshes[i]; + dtSwapEndian(&pd->vertBase); + dtSwapEndian(&pd->triBase); + } + + // Detail verts + for (int i = 0; i < header->detailVertCount*3; ++i) + { + dtSwapEndian(&detailVerts[i]); + } + + // BV-tree + for (int i = 0; i < header->bvNodeCount; ++i) + { + dtBVNode* node = &bvTree[i]; + for (int j = 0; j < 3; ++j) + { + dtSwapEndian(&node->bmin[j]); + dtSwapEndian(&node->bmax[j]); + } + dtSwapEndian(&node->i); + } + + // Off-mesh Connections. + for (int i = 0; i < header->offMeshConCount; ++i) + { + dtOffMeshConnection* con = &offMeshCons[i]; + for (int j = 0; j < 6; ++j) + dtSwapEndian(&con->pos[j]); + dtSwapEndian(&con->rad); + dtSwapEndian(&con->poly); + } + + return true; +} diff --git a/Pathing/Detour/Source/DetourNavMeshQuery.cpp b/Pathing/Detour/Source/DetourNavMeshQuery.cpp new file mode 100644 index 0000000000..8ea09c8239 --- /dev/null +++ b/Pathing/Detour/Source/DetourNavMeshQuery.cpp @@ -0,0 +1,3679 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include +#include +#include "DetourNavMeshQuery.h" +#include "DetourNavMesh.h" +#include "DetourNode.h" +#include "DetourCommon.h" +#include "DetourMath.h" +#include "DetourAlloc.h" +#include "DetourAssert.h" +#include + +/// @class dtQueryFilter +/// +/// The Default Implementation +/// +/// At construction: All area costs default to 1.0. All flags are included +/// and none are excluded. +/// +/// If a polygon has both an include and an exclude flag, it will be excluded. +/// +/// The way filtering works, a navigation mesh polygon must have at least one flag +/// set to ever be considered by a query. So a polygon with no flags will never +/// be considered. +/// +/// Setting the include flags to 0 will result in all polygons being excluded. +/// +/// Custom Implementations +/// +/// DT_VIRTUAL_QUERYFILTER must be defined in order to extend this class. +/// +/// Implement a custom query filter by overriding the virtual passFilter() +/// and getCost() functions. If this is done, both functions should be as +/// fast as possible. Use cached local copies of data rather than accessing +/// your own objects where possible. +/// +/// Custom implementations do not need to adhere to the flags or cost logic +/// used by the default implementation. +/// +/// In order for A* searches to work properly, the cost should be proportional to +/// the travel distance. Implementing a cost modifier less than 1.0 is likely +/// to lead to problems during pathfinding. +/// +/// @see dtNavMeshQuery + +dtQueryFilter::dtQueryFilter() : + m_includeFlags(0xffff), + m_excludeFlags(0) +{ + for (int i = 0; i < DT_MAX_AREAS; ++i) + m_areaCost[i] = 1.0f; +} + +#ifdef DT_VIRTUAL_QUERYFILTER +bool dtQueryFilter::passFilter(const dtPolyRef /*ref*/, + const dtMeshTile* /*tile*/, + const dtPoly* poly) const +{ + return (poly->flags & m_includeFlags) != 0 && (poly->flags & m_excludeFlags) == 0; +} + +float dtQueryFilter::getCost(const float* pa, const float* pb, + const dtPolyRef /*prevRef*/, const dtMeshTile* /*prevTile*/, const dtPoly* /*prevPoly*/, + const dtPolyRef /*curRef*/, const dtMeshTile* /*curTile*/, const dtPoly* curPoly, + const dtPolyRef /*nextRef*/, const dtMeshTile* /*nextTile*/, const dtPoly* /*nextPoly*/) const +{ + return dtVdist(pa, pb) * m_areaCost[curPoly->getArea()]; +} +#else +inline bool dtQueryFilter::passFilter(const dtPolyRef /*ref*/, + const dtMeshTile* /*tile*/, + const dtPoly* poly) const +{ + return (poly->flags & m_includeFlags) != 0 && (poly->flags & m_excludeFlags) == 0; +} + +inline float dtQueryFilter::getCost(const float* pa, const float* pb, + const dtPolyRef /*prevRef*/, const dtMeshTile* /*prevTile*/, const dtPoly* /*prevPoly*/, + const dtPolyRef /*curRef*/, const dtMeshTile* /*curTile*/, const dtPoly* curPoly, + const dtPolyRef /*nextRef*/, const dtMeshTile* /*nextTile*/, const dtPoly* /*nextPoly*/) const +{ + return dtVdist(pa, pb) * m_areaCost[curPoly->getArea()]; +} +#endif + +static const float H_SCALE = 0.999f; // Search heuristic scale. + + +dtNavMeshQuery* dtAllocNavMeshQuery() +{ + void* mem = dtAlloc(sizeof(dtNavMeshQuery), DT_ALLOC_PERM); + if (!mem) return 0; + return new(mem) dtNavMeshQuery; +} + +void dtFreeNavMeshQuery(dtNavMeshQuery* navmesh) +{ + if (!navmesh) return; + navmesh->~dtNavMeshQuery(); + dtFree(navmesh); +} + +////////////////////////////////////////////////////////////////////////////////////////// + +/// @class dtNavMeshQuery +/// +/// For methods that support undersized buffers, if the buffer is too small +/// to hold the entire result set the return status of the method will include +/// the #DT_BUFFER_TOO_SMALL flag. +/// +/// Constant member functions can be used by multiple clients without side +/// effects. (E.g. No change to the closed list. No impact on an in-progress +/// sliced path query. Etc.) +/// +/// Walls and portals: A @e wall is a polygon segment that is +/// considered impassable. A @e portal is a passable segment between polygons. +/// A portal may be treated as a wall based on the dtQueryFilter used for a query. +/// +/// @see dtNavMesh, dtQueryFilter, #dtAllocNavMeshQuery(), #dtAllocNavMeshQuery() + +dtNavMeshQuery::dtNavMeshQuery() : + m_nav(0), + m_tinyNodePool(0), + m_nodePool(0), + m_openList(0) +{ + memset(&m_query, 0, sizeof(dtQueryData)); +} + +dtNavMeshQuery::~dtNavMeshQuery() +{ + if (m_tinyNodePool) + m_tinyNodePool->~dtNodePool(); + if (m_nodePool) + m_nodePool->~dtNodePool(); + if (m_openList) + m_openList->~dtNodeQueue(); + dtFree(m_tinyNodePool); + dtFree(m_nodePool); + dtFree(m_openList); +} + +/// @par +/// +/// Must be the first function called after construction, before other +/// functions are used. +/// +/// This function can be used multiple times. +dtStatus dtNavMeshQuery::init(const dtNavMesh* nav, const int maxNodes) +{ + if (maxNodes > DT_NULL_IDX || maxNodes > (1 << DT_NODE_PARENT_BITS) - 1) + return DT_FAILURE | DT_INVALID_PARAM; + + m_nav = nav; + + if (!m_nodePool || m_nodePool->getMaxNodes() < maxNodes) + { + if (m_nodePool) + { + m_nodePool->~dtNodePool(); + dtFree(m_nodePool); + m_nodePool = 0; + } + m_nodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(maxNodes, dtNextPow2(maxNodes/4)); + if (!m_nodePool) + return DT_FAILURE | DT_OUT_OF_MEMORY; + } + else + { + m_nodePool->clear(); + } + + if (!m_tinyNodePool) + { + m_tinyNodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(64, 32); + if (!m_tinyNodePool) + return DT_FAILURE | DT_OUT_OF_MEMORY; + } + else + { + m_tinyNodePool->clear(); + } + + if (!m_openList || m_openList->getCapacity() < maxNodes) + { + if (m_openList) + { + m_openList->~dtNodeQueue(); + dtFree(m_openList); + m_openList = 0; + } + m_openList = new (dtAlloc(sizeof(dtNodeQueue), DT_ALLOC_PERM)) dtNodeQueue(maxNodes); + if (!m_openList) + return DT_FAILURE | DT_OUT_OF_MEMORY; + } + else + { + m_openList->clear(); + } + + return DT_SUCCESS; +} + +dtStatus dtNavMeshQuery::findRandomPoint(const dtQueryFilter* filter, float (*frand)(), + dtPolyRef* randomRef, float* randomPt) const +{ + dtAssert(m_nav); + + if (!filter || !frand || !randomRef || !randomPt) + return DT_FAILURE | DT_INVALID_PARAM; + + // Randomly pick one tile. Assume that all tiles cover roughly the same area. + const dtMeshTile* tile = 0; + float tsum = 0.0f; + for (int i = 0; i < m_nav->getMaxTiles(); i++) + { + const dtMeshTile* t = m_nav->getTile(i); + if (!t || !t->header) continue; + + // Choose random tile using reservoi sampling. + const float area = 1.0f; // Could be tile area too. + tsum += area; + const float u = frand(); + if (u*tsum <= area) + tile = t; + } + if (!tile) + return DT_FAILURE; + + // Randomly pick one polygon weighted by polygon area. + const dtPoly* poly = 0; + dtPolyRef polyRef = 0; + const dtPolyRef base = m_nav->getPolyRefBase(tile); + + float areaSum = 0.0f; + for (int i = 0; i < tile->header->polyCount; ++i) + { + const dtPoly* p = &tile->polys[i]; + // Do not return off-mesh connection polygons. + if (p->getType() != DT_POLYTYPE_GROUND) + continue; + // Must pass filter + const dtPolyRef ref = base | (dtPolyRef)i; + if (!filter->passFilter(ref, tile, p)) + continue; + + // Calc area of the polygon. + float polyArea = 0.0f; + for (int j = 2; j < p->vertCount; ++j) + { + const float* va = &tile->verts[p->verts[0]*3]; + const float* vb = &tile->verts[p->verts[j-1]*3]; + const float* vc = &tile->verts[p->verts[j]*3]; + polyArea += dtTriArea2D(va,vb,vc); + } + + // Choose random polygon weighted by area, using reservoi sampling. + areaSum += polyArea; + const float u = frand(); + if (u*areaSum <= polyArea) + { + poly = p; + polyRef = ref; + } + } + + if (!poly) + return DT_FAILURE; + + // Randomly pick point on polygon. + const float* v = &tile->verts[poly->verts[0]*3]; + float verts[3*DT_VERTS_PER_POLYGON]; + float areas[DT_VERTS_PER_POLYGON]; + dtVcopy(&verts[0*3],v); + for (int j = 1; j < poly->vertCount; ++j) + { + v = &tile->verts[poly->verts[j]*3]; + dtVcopy(&verts[j*3],v); + } + + const float s = frand(); + const float t = frand(); + + float pt[3]; + dtRandomPointInConvexPoly(verts, poly->vertCount, areas, s, t, pt); + + float h = 0.0f; + dtStatus status = getPolyHeight(polyRef, pt, &h); + if (dtStatusFailed(status)) + return status; + pt[1] = h; + + dtVcopy(randomPt, pt); + *randomRef = polyRef; + + return DT_SUCCESS; +} + +dtStatus dtNavMeshQuery::findRandomPointAroundCircle(dtPolyRef startRef, const float* centerPos, const float maxRadius, + const dtQueryFilter* filter, float (*frand)(), + dtPolyRef* randomRef, float* randomPt) const +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + // Validate input + if (!m_nav->isValidPolyRef(startRef) || + !centerPos || !dtVisfinite(centerPos) || + maxRadius < 0 || !dtMathIsfinite(maxRadius) || + !filter || !frand || !randomRef || !randomPt) + { + return DT_FAILURE | DT_INVALID_PARAM; + } + + const dtMeshTile* startTile = 0; + const dtPoly* startPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(startRef, &startTile, &startPoly); + if (!filter->passFilter(startRef, startTile, startPoly)) + return DT_FAILURE | DT_INVALID_PARAM; + + m_nodePool->clear(); + m_openList->clear(); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, centerPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + dtStatus status = DT_SUCCESS; + + const float radiusSqr = dtSqr(maxRadius); + float areaSum = 0.0f; + + const dtMeshTile* randomTile = 0; + const dtPoly* randomPoly = 0; + dtPolyRef randomPolyRef = 0; + + while (!m_openList->empty()) + { + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly); + + // Place random locations on on ground. + if (bestPoly->getType() == DT_POLYTYPE_GROUND) + { + // Calc area of the polygon. + float polyArea = 0.0f; + for (int j = 2; j < bestPoly->vertCount; ++j) + { + const float* va = &bestTile->verts[bestPoly->verts[0]*3]; + const float* vb = &bestTile->verts[bestPoly->verts[j-1]*3]; + const float* vc = &bestTile->verts[bestPoly->verts[j]*3]; + polyArea += dtTriArea2D(va,vb,vc); + } + // Choose random polygon weighted by area, using reservoi sampling. + areaSum += polyArea; + const float u = frand(); + if (u*areaSum <= polyArea) + { + randomTile = bestTile; + randomPoly = bestPoly; + randomPolyRef = bestRef; + } + } + + + // Get parent poly and tile. + dtPolyRef parentRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + if (bestNode->pidx) + parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; + if (parentRef) + m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly); + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + const dtLink* link = &bestTile->links[i]; + dtPolyRef neighbourRef = link->ref; + // Skip invalid neighbours and do not follow back to parent. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Expand to neighbour + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + // Do not advance if the polygon is excluded by the filter. + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // Find edge and calc distance to the edge. + float va[3], vb[3]; + if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb)) + continue; + + // If the circle is not touching the next polygon, skip it. + float tseg; + float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg); + if (distSqr > radiusSqr) + continue; + + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); + if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; + continue; + } + + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Cost + if (neighbourNode->flags == 0) + dtVlerp(neighbourNode->pos, va, vb, 0.5f); + + const float total = bestNode->total + dtVdist(bestNode->pos, neighbourNode->pos); + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + + neighbourNode->id = neighbourRef; + neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED); + neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); + neighbourNode->total = total; + + if (neighbourNode->flags & DT_NODE_OPEN) + { + m_openList->modify(neighbourNode); + } + else + { + neighbourNode->flags = DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + } + } + + if (!randomPoly) + return DT_FAILURE; + + // Randomly pick point on polygon. + const float* v = &randomTile->verts[randomPoly->verts[0]*3]; + float verts[3*DT_VERTS_PER_POLYGON]; + float areas[DT_VERTS_PER_POLYGON]; + dtVcopy(&verts[0*3],v); + for (int j = 1; j < randomPoly->vertCount; ++j) + { + v = &randomTile->verts[randomPoly->verts[j]*3]; + dtVcopy(&verts[j*3],v); + } + + const float s = frand(); + const float t = frand(); + + float pt[3]; + dtRandomPointInConvexPoly(verts, randomPoly->vertCount, areas, s, t, pt); + + float h = 0.0f; + dtStatus stat = getPolyHeight(randomPolyRef, pt, &h); + if (dtStatusFailed(status)) + return stat; + pt[1] = h; + + dtVcopy(randomPt, pt); + *randomRef = randomPolyRef; + + return DT_SUCCESS; +} + + +////////////////////////////////////////////////////////////////////////////////////////// + +/// @par +/// +/// Uses the detail polygons to find the surface height. (Most accurate.) +/// +/// @p pos does not have to be within the bounds of the polygon or navigation mesh. +/// +/// See closestPointOnPolyBoundary() for a limited but faster option. +/// +dtStatus dtNavMeshQuery::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const +{ + dtAssert(m_nav); + if (!m_nav->isValidPolyRef(ref) || + !pos || !dtVisfinite(pos) || + !closest) + { + return DT_FAILURE | DT_INVALID_PARAM; + } + + m_nav->closestPointOnPoly(ref, pos, closest, posOverPoly); + return DT_SUCCESS; +} + +/// @par +/// +/// Much faster than closestPointOnPoly(). +/// +/// If the provided position lies within the polygon's xz-bounds (above or below), +/// then @p pos and @p closest will be equal. +/// +/// The height of @p closest will be the polygon boundary. The height detail is not used. +/// +/// @p pos does not have to be within the bounds of the polybon or the navigation mesh. +/// +dtStatus dtNavMeshQuery::closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const +{ + dtAssert(m_nav); + + const dtMeshTile* tile = 0; + const dtPoly* poly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly))) + return DT_FAILURE | DT_INVALID_PARAM; + + if (!pos || !dtVisfinite(pos) || !closest) + return DT_FAILURE | DT_INVALID_PARAM; + + // Collect vertices. + float verts[DT_VERTS_PER_POLYGON*3]; + float edged[DT_VERTS_PER_POLYGON]; + float edget[DT_VERTS_PER_POLYGON]; + int nv = 0; + for (int i = 0; i < (int)poly->vertCount; ++i) + { + dtVcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]); + nv++; + } + + bool inside = dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget); + if (inside) + { + // Point is inside the polygon, return the point. + dtVcopy(closest, pos); + } + else + { + // Point is outside the polygon, dtClamp to nearest edge. + float dmin = edged[0]; + int imin = 0; + for (int i = 1; i < nv; ++i) + { + if (edged[i] < dmin) + { + dmin = edged[i]; + imin = i; + } + } + const float* va = &verts[imin*3]; + const float* vb = &verts[((imin+1)%nv)*3]; + dtVlerp(closest, va, vb, edget[imin]); + } + + return DT_SUCCESS; +} + +/// @par +/// +/// Will return #DT_FAILURE | DT_INVALID_PARAM if the provided position is outside the xz-bounds +/// of the polygon. +/// +dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* height) const +{ + dtAssert(m_nav); + + const dtMeshTile* tile = 0; + const dtPoly* poly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly))) + return DT_FAILURE | DT_INVALID_PARAM; + + if (!pos || !dtVisfinite2D(pos)) + return DT_FAILURE | DT_INVALID_PARAM; + + // We used to return success for offmesh connections, but the + // getPolyHeight in DetourNavMesh does not do this, so special + // case it here. + if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + { + const float* v0 = &tile->verts[poly->verts[0]*3]; + const float* v1 = &tile->verts[poly->verts[1]*3]; + float t; + dtDistancePtSegSqr2D(pos, v0, v1, t); + if (height) + *height = v0[1] + (v1[1] - v0[1])*t; + + return DT_SUCCESS; + } + + return m_nav->getPolyHeight(tile, poly, pos, height) + ? DT_SUCCESS + : DT_FAILURE | DT_INVALID_PARAM; +} + +class dtFindNearestPolyQuery : public dtPolyQuery +{ + const dtNavMeshQuery* m_query; + const float* m_center; + float m_nearestDistanceSqr; + dtPolyRef m_nearestRef; + float m_nearestPoint[3]; + bool m_overPoly; + +public: + dtFindNearestPolyQuery(const dtNavMeshQuery* query, const float* center) + : m_query(query), m_center(center), m_nearestDistanceSqr(FLT_MAX), m_nearestRef(0), m_nearestPoint(), m_overPoly(false) + { + } + + dtPolyRef nearestRef() const { return m_nearestRef; } + const float* nearestPoint() const { return m_nearestPoint; } + bool isOverPoly() const { return m_overPoly; } + + void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count) + { + dtIgnoreUnused(polys); + + for (int i = 0; i < count; ++i) + { + dtPolyRef ref = refs[i]; + float closestPtPoly[3]; + float diff[3]; + bool posOverPoly = false; + float d; + m_query->closestPointOnPoly(ref, m_center, closestPtPoly, &posOverPoly); + + // If a point is directly over a polygon and closer than + // climb height, favor that instead of straight line nearest point. + dtVsub(diff, m_center, closestPtPoly); + if (posOverPoly) + { + d = dtAbs(diff[1]) - tile->header->walkableClimb; + d = d > 0 ? d*d : 0; + } + else + { + d = dtVlenSqr(diff); + } + + if (d < m_nearestDistanceSqr) + { + dtVcopy(m_nearestPoint, closestPtPoly); + + m_nearestDistanceSqr = d; + m_nearestRef = ref; + m_overPoly = posOverPoly; + } + } + } +}; + +/// @par +/// +/// @note If the search box does not intersect any polygons the search will +/// return #DT_SUCCESS, but @p nearestRef will be zero. So if in doubt, check +/// @p nearestRef before using @p nearestPt. +/// +dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* halfExtents, + const dtQueryFilter* filter, + dtPolyRef* nearestRef, float* nearestPt) const +{ + return findNearestPoly(center, halfExtents, filter, nearestRef, nearestPt, NULL); +} + +// If center and nearestPt point to an equal position, isOverPoly will be true; +// however there's also a special case of climb height inside the polygon (see dtFindNearestPolyQuery) +dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* halfExtents, + const dtQueryFilter* filter, + dtPolyRef* nearestRef, float* nearestPt, bool* isOverPoly) const +{ + dtAssert(m_nav); + + if (!nearestRef) + return DT_FAILURE | DT_INVALID_PARAM; + + // queryPolygons below will check rest of params + + dtFindNearestPolyQuery query(this, center); + + dtStatus status = queryPolygons(center, halfExtents, filter, &query); + if (dtStatusFailed(status)) + return status; + + *nearestRef = query.nearestRef(); + // Only override nearestPt if we actually found a poly so the nearest point + // is valid. + if (nearestPt && *nearestRef) + { + dtVcopy(nearestPt, query.nearestPoint()); + if (isOverPoly) + *isOverPoly = query.isOverPoly(); + } + + return DT_SUCCESS; +} + +void dtNavMeshQuery::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax, + const dtQueryFilter* filter, dtPolyQuery* query) const +{ + dtAssert(m_nav); + static const int batchSize = 32; + dtPolyRef polyRefs[batchSize]; + dtPoly* polys[batchSize]; + int n = 0; + + if (tile->bvTree) + { + const dtBVNode* node = &tile->bvTree[0]; + const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount]; + const float* tbmin = tile->header->bmin; + const float* tbmax = tile->header->bmax; + const float qfac = tile->header->bvQuantFactor; + + // Calculate quantized box + unsigned short bmin[3], bmax[3]; + // dtClamp query box to world box. + float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0]; + float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1]; + float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2]; + float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0]; + float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1]; + float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2]; + // Quantize + bmin[0] = (unsigned short)(qfac * minx) & 0xfffe; + bmin[1] = (unsigned short)(qfac * miny) & 0xfffe; + bmin[2] = (unsigned short)(qfac * minz) & 0xfffe; + bmax[0] = (unsigned short)(qfac * maxx + 1) | 1; + bmax[1] = (unsigned short)(qfac * maxy + 1) | 1; + bmax[2] = (unsigned short)(qfac * maxz + 1) | 1; + + // Traverse tree + const dtPolyRef base = m_nav->getPolyRefBase(tile); + while (node < end) + { + const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax); + const bool isLeafNode = node->i >= 0; + + if (isLeafNode && overlap) + { + dtPolyRef ref = base | (dtPolyRef)node->i; + if (filter->passFilter(ref, tile, &tile->polys[node->i])) + { + polyRefs[n] = ref; + polys[n] = &tile->polys[node->i]; + + if (n == batchSize - 1) + { + query->process(tile, polys, polyRefs, batchSize); + n = 0; + } + else + { + n++; + } + } + } + + if (overlap || isLeafNode) + node++; + else + { + const int escapeIndex = -node->i; + node += escapeIndex; + } + } + } + else + { + float bmin[3], bmax[3]; + const dtPolyRef base = m_nav->getPolyRefBase(tile); + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* p = &tile->polys[i]; + // Do not return off-mesh connection polygons. + if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + // Must pass filter + const dtPolyRef ref = base | (dtPolyRef)i; + if (!filter->passFilter(ref, tile, p)) + continue; + // Calc polygon bounds. + const float* v = &tile->verts[p->verts[0]*3]; + dtVcopy(bmin, v); + dtVcopy(bmax, v); + for (int j = 1; j < p->vertCount; ++j) + { + v = &tile->verts[p->verts[j]*3]; + dtVmin(bmin, v); + dtVmax(bmax, v); + } + if (dtOverlapBounds(qmin, qmax, bmin, bmax)) + { + polyRefs[n] = ref; + polys[n] = p; + + if (n == batchSize - 1) + { + query->process(tile, polys, polyRefs, batchSize); + n = 0; + } + else + { + n++; + } + } + } + } + + // Process the last polygons that didn't make a full batch. + if (n > 0) + query->process(tile, polys, polyRefs, n); +} + +class dtCollectPolysQuery : public dtPolyQuery +{ + dtPolyRef* m_polys; + const int m_maxPolys; + int m_numCollected; + bool m_overflow; + +public: + dtCollectPolysQuery(dtPolyRef* polys, const int maxPolys) + : m_polys(polys), m_maxPolys(maxPolys), m_numCollected(0), m_overflow(false) + { + } + + int numCollected() const { return m_numCollected; } + bool overflowed() const { return m_overflow; } + + void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count) + { + dtIgnoreUnused(tile); + dtIgnoreUnused(polys); + + int numLeft = m_maxPolys - m_numCollected; + int toCopy = count; + if (toCopy > numLeft) + { + m_overflow = true; + toCopy = numLeft; + } + + memcpy(m_polys + m_numCollected, refs, (size_t)toCopy * sizeof(dtPolyRef)); + m_numCollected += toCopy; + } +}; + +/// @par +/// +/// If no polygons are found, the function will return #DT_SUCCESS with a +/// @p polyCount of zero. +/// +/// If @p polys is too small to hold the entire result set, then the array will +/// be filled to capacity. The method of choosing which polygons from the +/// full set are included in the partial result set is undefined. +/// +dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* halfExtents, + const dtQueryFilter* filter, + dtPolyRef* polys, int* polyCount, const int maxPolys) const +{ + if (!polys || !polyCount || maxPolys < 0) + return DT_FAILURE | DT_INVALID_PARAM; + + dtCollectPolysQuery collector(polys, maxPolys); + + dtStatus status = queryPolygons(center, halfExtents, filter, &collector); + if (dtStatusFailed(status)) + return status; + + *polyCount = collector.numCollected(); + return collector.overflowed() ? DT_SUCCESS | DT_BUFFER_TOO_SMALL : DT_SUCCESS; +} + +/// @par +/// +/// The query will be invoked with batches of polygons. Polygons passed +/// to the query have bounding boxes that overlap with the center and halfExtents +/// passed to this function. The dtPolyQuery::process function is invoked multiple +/// times until all overlapping polygons have been processed. +/// +dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* halfExtents, + const dtQueryFilter* filter, dtPolyQuery* query) const +{ + dtAssert(m_nav); + + if (!center || !dtVisfinite(center) || + !halfExtents || !dtVisfinite(halfExtents) || + !filter || !query) + { + return DT_FAILURE | DT_INVALID_PARAM; + } + + float bmin[3], bmax[3]; + dtVsub(bmin, center, halfExtents); + dtVadd(bmax, center, halfExtents); + + // Find tiles the query touches. + int minx, miny, maxx, maxy; + m_nav->calcTileLoc(bmin, &minx, &miny); + m_nav->calcTileLoc(bmax, &maxx, &maxy); + + static const int MAX_NEIS = 32; + const dtMeshTile* neis[MAX_NEIS]; + + for (int y = miny; y <= maxy; ++y) + { + for (int x = minx; x <= maxx; ++x) + { + const int nneis = m_nav->getTilesAt(x,y,neis,MAX_NEIS); + for (int j = 0; j < nneis; ++j) + { + queryPolygonsInTile(neis[j], bmin, bmax, filter, query); + } + } + } + + return DT_SUCCESS; +} + +/// @par +/// +/// If the end polygon cannot be reached through the navigation graph, +/// the last polygon in the path will be the nearest the end polygon. +/// +/// If the path array is to small to hold the full result, it will be filled as +/// far as possible from the start polygon toward the end polygon. +/// +/// The start and end positions are used to calculate traversal costs. +/// (The y-values impact the result.) +/// +dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef, + const float* startPos, const float* endPos, + const dtQueryFilter* filter, + dtPolyRef* path, int* pathCount, const int maxPath) const +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + if (!pathCount) + return DT_FAILURE | DT_INVALID_PARAM; + + *pathCount = 0; + + // Validate input + if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef) || + !startPos || !dtVisfinite(startPos) || + !endPos || !dtVisfinite(endPos) || + !filter || !path || maxPath <= 0) + { + return DT_FAILURE | DT_INVALID_PARAM; + } + + if (startRef == endRef) + { + path[0] = startRef; + *pathCount = 1; + return DT_SUCCESS; + } + + m_nodePool->clear(); + m_openList->clear(); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, startPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = dtVdist(startPos, endPos) * H_SCALE; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + dtNode* lastBestNode = startNode; + float lastBestNodeCost = startNode->total; + + bool outOfNodes = false; + + while (!m_openList->empty()) + { + // Remove node from open list and put it in closed list. + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Reached the goal, stop searching. + if (bestNode->id == endRef) + { + lastBestNode = bestNode; + break; + } + + // Get current poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly); + + // Get parent poly and tile. + dtPolyRef parentRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + if (bestNode->pidx) + parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; + if (parentRef) + m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly); + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + dtPolyRef neighbourRef = bestTile->links[i].ref; + + // Skip invalid ids and do not expand back to where we came from. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Get neighbour poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // deal explicitly with crossing tile boundaries + unsigned char crossSide = 0; + if (bestTile->links[i].side != 0xff) + crossSide = bestTile->links[i].side >> 1; + + // get the node + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef, crossSide); + if (!neighbourNode) + { + outOfNodes = true; + continue; + } + + // If the node is visited the first time, calculate node position. + if (neighbourNode->flags == 0) + { + getEdgeMidPoint(bestRef, bestPoly, bestTile, + neighbourRef, neighbourPoly, neighbourTile, + neighbourNode->pos); + } + + // Calculate cost and heuristic. + float cost = 0; + float heuristic = 0; + + // Special case for last node. + if (neighbourRef == endRef) + { + // Cost + const float curCost = filter->getCost(bestNode->pos, neighbourNode->pos, + parentRef, parentTile, parentPoly, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly); + const float endCost = filter->getCost(neighbourNode->pos, endPos, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly, + 0, 0, 0); + + cost = bestNode->cost + curCost + endCost; + heuristic = 0; + } + else + { + // Cost + const float curCost = filter->getCost(bestNode->pos, neighbourNode->pos, + parentRef, parentTile, parentPoly, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly); + cost = bestNode->cost + curCost; + heuristic = dtVdist(neighbourNode->pos, endPos)*H_SCALE; + } + + const float total = cost + heuristic; + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + // The node is already visited and process, and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_CLOSED) && total >= neighbourNode->total) + continue; + + // Add or update the node. + neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); + neighbourNode->id = neighbourRef; + neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED); + neighbourNode->cost = cost; + neighbourNode->total = total; + + if (neighbourNode->flags & DT_NODE_OPEN) + { + // Already in open, update node location. + m_openList->modify(neighbourNode); + } + else + { + // Put the node in open list. + neighbourNode->flags |= DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + + // Update nearest node to target so far. + if (heuristic < lastBestNodeCost) + { + lastBestNodeCost = heuristic; + lastBestNode = neighbourNode; + } + } + } + + dtStatus status = getPathToNode(lastBestNode, path, pathCount, maxPath); + + if (lastBestNode->id != endRef) + status |= DT_PARTIAL_RESULT; + + if (outOfNodes) + status |= DT_OUT_OF_NODES; + + return status; +} + +dtStatus dtNavMeshQuery::getPathToNode(dtNode* endNode, dtPolyRef* path, int* pathCount, int maxPath) const +{ + // Find the length of the entire path. + dtNode* curNode = endNode; + int length = 0; + do + { + length++; + curNode = m_nodePool->getNodeAtIdx(curNode->pidx); + } while (curNode); + + // If the path cannot be fully stored then advance to the last node we will be able to store. + curNode = endNode; + int writeCount; + for (writeCount = length; writeCount > maxPath; writeCount--) + { + dtAssert(curNode); + + curNode = m_nodePool->getNodeAtIdx(curNode->pidx); + } + + // Write path + for (int i = writeCount - 1; i >= 0; i--) + { + dtAssert(curNode); + + path[i] = curNode->id; + curNode = m_nodePool->getNodeAtIdx(curNode->pidx); + } + + dtAssert(!curNode); + + *pathCount = dtMin(length, maxPath); + + if (length > maxPath) + return DT_SUCCESS | DT_BUFFER_TOO_SMALL; + + return DT_SUCCESS; +} + + +/// @par +/// +/// @warning Calling any non-slice methods before calling finalizeSlicedFindPath() +/// or finalizeSlicedFindPathPartial() may result in corrupted data! +/// +/// The @p filter pointer is stored and used for the duration of the sliced +/// path query. +/// +dtStatus dtNavMeshQuery::initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef, + const float* startPos, const float* endPos, + const dtQueryFilter* filter, const unsigned int options) +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + // Init path state. + memset(&m_query, 0, sizeof(dtQueryData)); + m_query.status = DT_FAILURE; + m_query.startRef = startRef; + m_query.endRef = endRef; + if (startPos) + dtVcopy(m_query.startPos, startPos); + if (endPos) + dtVcopy(m_query.endPos, endPos); + m_query.filter = filter; + m_query.options = options; + m_query.raycastLimitSqr = FLT_MAX; + + // Validate input + if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef) || + !startPos || !dtVisfinite(startPos) || + !endPos || !dtVisfinite(endPos) || !filter) + { + return DT_FAILURE | DT_INVALID_PARAM; + } + + // trade quality with performance? + if (options & DT_FINDPATH_ANY_ANGLE) + { + // limiting to several times the character radius yields nice results. It is not sensitive + // so it is enough to compute it from the first tile. + const dtMeshTile* tile = m_nav->getTileByRef(startRef); + float agentRadius = tile->header->walkableRadius; + m_query.raycastLimitSqr = dtSqr(agentRadius * DT_RAY_CAST_LIMIT_PROPORTIONS); + } + + if (startRef == endRef) + { + m_query.status = DT_SUCCESS; + return DT_SUCCESS; + } + + m_nodePool->clear(); + m_openList->clear(); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, startPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = dtVdist(startPos, endPos) * H_SCALE; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + m_query.status = DT_IN_PROGRESS; + m_query.lastBestNode = startNode; + m_query.lastBestNodeCost = startNode->total; + + return m_query.status; +} + +dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter, int* doneIters) +{ + if (!dtStatusInProgress(m_query.status)) + return m_query.status; + + // Make sure the request is still valid. + if (!m_nav->isValidPolyRef(m_query.startRef) || !m_nav->isValidPolyRef(m_query.endRef)) + { + m_query.status = DT_FAILURE; + return DT_FAILURE; + } + + dtRaycastHit rayHit; + rayHit.maxPath = 0; + + int iter = 0; + while (iter < maxIter && !m_openList->empty()) + { + iter++; + + // Remove node from open list and put it in closed list. + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Reached the goal, stop searching. + if (bestNode->id == m_query.endRef) + { + m_query.lastBestNode = bestNode; + const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK; + m_query.status = DT_SUCCESS | details; + if (doneIters) + *doneIters = iter; + return m_query.status; + } + + // Get current poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(bestRef, &bestTile, &bestPoly))) + { + // The polygon has disappeared during the sliced query, fail. + m_query.status = DT_FAILURE; + if (doneIters) + *doneIters = iter; + return m_query.status; + } + + // Get parent and grand parent poly and tile. + dtPolyRef parentRef = 0, grandpaRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + dtNode* parentNode = 0; + if (bestNode->pidx) + { + parentNode = m_nodePool->getNodeAtIdx(bestNode->pidx); + parentRef = parentNode->id; + if (parentNode->pidx) + grandpaRef = m_nodePool->getNodeAtIdx(parentNode->pidx)->id; + } + if (parentRef) + { + bool invalidParent = dtStatusFailed(m_nav->getTileAndPolyByRef(parentRef, &parentTile, &parentPoly)); + if (invalidParent || (grandpaRef && !m_nav->isValidPolyRef(grandpaRef)) ) + { + // The polygon has disappeared during the sliced query, fail. + m_query.status = DT_FAILURE; + if (doneIters) + *doneIters = iter; + return m_query.status; + } + } + + // decide whether to test raycast to previous nodes + bool tryLOS = false; + if (m_query.options & DT_FINDPATH_ANY_ANGLE) + { + if ((parentRef != 0) && (dtVdistSqr(parentNode->pos, bestNode->pos) < m_query.raycastLimitSqr)) + tryLOS = true; + } + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + dtPolyRef neighbourRef = bestTile->links[i].ref; + + // Skip invalid ids and do not expand back to where we came from. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Get neighbour poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + if (!m_query.filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // get the neighbor node + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef, 0); + if (!neighbourNode) + { + m_query.status |= DT_OUT_OF_NODES; + continue; + } + + // do not expand to nodes that were already visited from the same parent + if (neighbourNode->pidx != 0 && neighbourNode->pidx == bestNode->pidx) + continue; + + // If the node is visited the first time, calculate node position. + if (neighbourNode->flags == 0) + { + getEdgeMidPoint(bestRef, bestPoly, bestTile, + neighbourRef, neighbourPoly, neighbourTile, + neighbourNode->pos); + } + + // Calculate cost and heuristic. + float cost = 0; + float heuristic = 0; + + // raycast parent + bool foundShortCut = false; + rayHit.pathCost = rayHit.t = 0; + if (tryLOS) + { + raycast(parentRef, parentNode->pos, neighbourNode->pos, m_query.filter, DT_RAYCAST_USE_COSTS, &rayHit, grandpaRef); + foundShortCut = rayHit.t >= 1.0f; + } + + // update move cost + if (foundShortCut) + { + // shortcut found using raycast. Using shorter cost instead + cost = parentNode->cost + rayHit.pathCost; + } + else + { + // No shortcut found. + const float curCost = m_query.filter->getCost(bestNode->pos, neighbourNode->pos, + parentRef, parentTile, parentPoly, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly); + cost = bestNode->cost + curCost; + } + + // Special case for last node. + if (neighbourRef == m_query.endRef) + { + const float endCost = m_query.filter->getCost(neighbourNode->pos, m_query.endPos, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly, + 0, 0, 0); + + cost = cost + endCost; + heuristic = 0; + } + else + { + heuristic = dtVdist(neighbourNode->pos, m_query.endPos)*H_SCALE; + } + + const float total = cost + heuristic; + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + // The node is already visited and process, and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_CLOSED) && total >= neighbourNode->total) + continue; + + // Add or update the node. + neighbourNode->pidx = foundShortCut ? bestNode->pidx : m_nodePool->getNodeIdx(bestNode); + neighbourNode->id = neighbourRef; + neighbourNode->flags = (neighbourNode->flags & ~(DT_NODE_CLOSED | DT_NODE_PARENT_DETACHED)); + neighbourNode->cost = cost; + neighbourNode->total = total; + if (foundShortCut) + neighbourNode->flags = (neighbourNode->flags | DT_NODE_PARENT_DETACHED); + + if (neighbourNode->flags & DT_NODE_OPEN) + { + // Already in open, update node location. + m_openList->modify(neighbourNode); + } + else + { + // Put the node in open list. + neighbourNode->flags |= DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + + // Update nearest node to target so far. + if (heuristic < m_query.lastBestNodeCost) + { + m_query.lastBestNodeCost = heuristic; + m_query.lastBestNode = neighbourNode; + } + } + } + + // Exhausted all nodes, but could not find path. + if (m_openList->empty()) + { + const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK; + m_query.status = DT_SUCCESS | details; + } + + if (doneIters) + *doneIters = iter; + + return m_query.status; +} + +dtStatus dtNavMeshQuery::finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, const int maxPath) +{ + if (!pathCount) + return DT_FAILURE | DT_INVALID_PARAM; + + *pathCount = 0; + + if (!path || maxPath <= 0) + return DT_FAILURE | DT_INVALID_PARAM; + + if (dtStatusFailed(m_query.status)) + { + // Reset query. + memset(&m_query, 0, sizeof(dtQueryData)); + return DT_FAILURE; + } + + int n = 0; + + if (m_query.startRef == m_query.endRef) + { + // Special case: the search starts and ends at same poly. + path[n++] = m_query.startRef; + } + else + { + // Reverse the path. + dtAssert(m_query.lastBestNode); + + if (m_query.lastBestNode->id != m_query.endRef) + m_query.status |= DT_PARTIAL_RESULT; + + dtNode* prev = 0; + dtNode* node = m_query.lastBestNode; + int prevRay = 0; + do + { + dtNode* next = m_nodePool->getNodeAtIdx(node->pidx); + node->pidx = m_nodePool->getNodeIdx(prev); + prev = node; + int nextRay = node->flags & DT_NODE_PARENT_DETACHED; // keep track of whether parent is not adjacent (i.e. due to raycast shortcut) + node->flags = (node->flags & ~DT_NODE_PARENT_DETACHED) | prevRay; // and store it in the reversed path's node + prevRay = nextRay; + node = next; + } + while (node); + + // Store path + node = prev; + do + { + dtNode* next = m_nodePool->getNodeAtIdx(node->pidx); + dtStatus status = 0; + if (node->flags & DT_NODE_PARENT_DETACHED) + { + float t, normal[3]; + int m; + status = raycast(node->id, node->pos, next->pos, m_query.filter, &t, normal, path+n, &m, maxPath-n); + n += m; + // raycast ends on poly boundary and the path might include the next poly boundary. + if (path[n-1] == next->id) + n--; // remove to avoid duplicates + } + else + { + path[n++] = node->id; + if (n >= maxPath) + status = DT_BUFFER_TOO_SMALL; + } + + if (status & DT_STATUS_DETAIL_MASK) + { + m_query.status |= status & DT_STATUS_DETAIL_MASK; + break; + } + node = next; + } + while (node); + } + + const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK; + + // Reset query. + memset(&m_query, 0, sizeof(dtQueryData)); + + *pathCount = n; + + return DT_SUCCESS | details; +} + +dtStatus dtNavMeshQuery::finalizeSlicedFindPathPartial(const dtPolyRef* existing, const int existingSize, + dtPolyRef* path, int* pathCount, const int maxPath) +{ + if (!pathCount) + return DT_FAILURE | DT_INVALID_PARAM; + + *pathCount = 0; + + if (!existing || existingSize <= 0 || !path || !pathCount || maxPath <= 0) + return DT_FAILURE | DT_INVALID_PARAM; + + if (dtStatusFailed(m_query.status)) + { + // Reset query. + memset(&m_query, 0, sizeof(dtQueryData)); + return DT_FAILURE; + } + + int n = 0; + + if (m_query.startRef == m_query.endRef) + { + // Special case: the search starts and ends at same poly. + path[n++] = m_query.startRef; + } + else + { + // Find furthest existing node that was visited. + dtNode* prev = 0; + dtNode* node = 0; + for (int i = existingSize-1; i >= 0; --i) + { + m_nodePool->findNodes(existing[i], &node, 1); + if (node) + break; + } + + if (!node) + { + m_query.status |= DT_PARTIAL_RESULT; + dtAssert(m_query.lastBestNode); + node = m_query.lastBestNode; + } + + // Reverse the path. + int prevRay = 0; + do + { + dtNode* next = m_nodePool->getNodeAtIdx(node->pidx); + node->pidx = m_nodePool->getNodeIdx(prev); + prev = node; + int nextRay = node->flags & DT_NODE_PARENT_DETACHED; // keep track of whether parent is not adjacent (i.e. due to raycast shortcut) + node->flags = (node->flags & ~DT_NODE_PARENT_DETACHED) | prevRay; // and store it in the reversed path's node + prevRay = nextRay; + node = next; + } + while (node); + + // Store path + node = prev; + do + { + dtNode* next = m_nodePool->getNodeAtIdx(node->pidx); + dtStatus status = 0; + if (node->flags & DT_NODE_PARENT_DETACHED) + { + float t, normal[3]; + int m; + status = raycast(node->id, node->pos, next->pos, m_query.filter, &t, normal, path+n, &m, maxPath-n); + n += m; + // raycast ends on poly boundary and the path might include the next poly boundary. + if (path[n-1] == next->id) + n--; // remove to avoid duplicates + } + else + { + path[n++] = node->id; + if (n >= maxPath) + status = DT_BUFFER_TOO_SMALL; + } + + if (status & DT_STATUS_DETAIL_MASK) + { + m_query.status |= status & DT_STATUS_DETAIL_MASK; + break; + } + node = next; + } + while (node); + } + + const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK; + + // Reset query. + memset(&m_query, 0, sizeof(dtQueryData)); + + *pathCount = n; + + return DT_SUCCESS | details; +} + + +dtStatus dtNavMeshQuery::appendVertex(const float* pos, const unsigned char flags, const dtPolyRef ref, + float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, + int* straightPathCount, const int maxStraightPath) const +{ + if ((*straightPathCount) > 0 && dtVequal(&straightPath[((*straightPathCount)-1)*3], pos)) + { + // The vertices are equal, update flags and poly. + if (straightPathFlags) + straightPathFlags[(*straightPathCount)-1] = flags; + if (straightPathRefs) + straightPathRefs[(*straightPathCount)-1] = ref; + } + else + { + // Append new vertex. + dtVcopy(&straightPath[(*straightPathCount)*3], pos); + if (straightPathFlags) + straightPathFlags[(*straightPathCount)] = flags; + if (straightPathRefs) + straightPathRefs[(*straightPathCount)] = ref; + (*straightPathCount)++; + + // If there is no space to append more vertices, return. + if ((*straightPathCount) >= maxStraightPath) + { + return DT_SUCCESS | DT_BUFFER_TOO_SMALL; + } + + // If reached end of path, return. + if (flags == DT_STRAIGHTPATH_END) + { + return DT_SUCCESS; + } + } + return DT_IN_PROGRESS; +} + +dtStatus dtNavMeshQuery::appendPortals(const int startIdx, const int endIdx, const float* endPos, const dtPolyRef* path, + float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, + int* straightPathCount, const int maxStraightPath, const int options) const +{ + const float* startPos = &straightPath[(*straightPathCount-1)*3]; + // Append or update last vertex + dtStatus stat = 0; + for (int i = startIdx; i < endIdx; i++) + { + // Calculate portal + const dtPolyRef from = path[i]; + const dtMeshTile* fromTile = 0; + const dtPoly* fromPoly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly))) + return DT_FAILURE | DT_INVALID_PARAM; + + const dtPolyRef to = path[i+1]; + const dtMeshTile* toTile = 0; + const dtPoly* toPoly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(to, &toTile, &toPoly))) + return DT_FAILURE | DT_INVALID_PARAM; + + float left[3], right[3]; + if (dtStatusFailed(getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right))) + break; + + if (options & DT_STRAIGHTPATH_AREA_CROSSINGS) + { + // Skip intersection if only area crossings are requested. + if (fromPoly->getArea() == toPoly->getArea()) + continue; + } + + // Append intersection + float s,t; + if (dtIntersectSegSeg2D(startPos, endPos, left, right, s, t)) + { + float pt[3]; + dtVlerp(pt, left,right, t); + + stat = appendVertex(pt, 0, path[i+1], + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + if (stat != DT_IN_PROGRESS) + return stat; + } + } + return DT_IN_PROGRESS; +} + +/// @par +/// +/// This method peforms what is often called 'string pulling'. +/// +/// The start position is clamped to the first polygon in the path, and the +/// end position is clamped to the last. So the start and end positions should +/// normally be within or very near the first and last polygons respectively. +/// +/// The returned polygon references represent the reference id of the polygon +/// that is entered at the associated path position. The reference id associated +/// with the end point will always be zero. This allows, for example, matching +/// off-mesh link points to their representative polygons. +/// +/// If the provided result buffers are too small for the entire result set, +/// they will be filled as far as possible from the start toward the end +/// position. +/// +dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* endPos, + const dtPolyRef* path, const int pathSize, + float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, + int* straightPathCount, const int maxStraightPath, const int options) const +{ + dtAssert(m_nav); + + if (!straightPathCount) + return DT_FAILURE | DT_INVALID_PARAM; + + *straightPathCount = 0; + + if (!startPos || !dtVisfinite(startPos) || + !endPos || !dtVisfinite(endPos) || + !path || pathSize <= 0 || !path[0] || + maxStraightPath <= 0) + { + return DT_FAILURE | DT_INVALID_PARAM; + } + + dtStatus stat = 0; + + // TODO: Should this be callers responsibility? + float closestStartPos[3]; + if (dtStatusFailed(closestPointOnPolyBoundary(path[0], startPos, closestStartPos))) + return DT_FAILURE | DT_INVALID_PARAM; + + float closestEndPos[3]; + if (dtStatusFailed(closestPointOnPolyBoundary(path[pathSize-1], endPos, closestEndPos))) + return DT_FAILURE | DT_INVALID_PARAM; + + // Add start point. + stat = appendVertex(closestStartPos, DT_STRAIGHTPATH_START, path[0], + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + if (stat != DT_IN_PROGRESS) + return stat; + + if (pathSize > 1) + { + float portalApex[3], portalLeft[3], portalRight[3]; + dtVcopy(portalApex, closestStartPos); + dtVcopy(portalLeft, portalApex); + dtVcopy(portalRight, portalApex); + int apexIndex = 0; + int leftIndex = 0; + int rightIndex = 0; + + unsigned char leftPolyType = 0; + unsigned char rightPolyType = 0; + + dtPolyRef leftPolyRef = path[0]; + dtPolyRef rightPolyRef = path[0]; + + for (int i = 0; i < pathSize; ++i) + { + float left[3], right[3]; + unsigned char toType; + + if (i+1 < pathSize) + { + unsigned char fromType; // fromType is ignored. + + // Next portal. + if (dtStatusFailed(getPortalPoints(path[i], path[i+1], left, right, fromType, toType))) + { + // Failed to get portal points, in practice this means that path[i+1] is invalid polygon. + // Clamp the end point to path[i], and return the path so far. + + if (dtStatusFailed(closestPointOnPolyBoundary(path[i], endPos, closestEndPos))) + { + // This should only happen when the first polygon is invalid. + return DT_FAILURE | DT_INVALID_PARAM; + } + + // Apeend portals along the current straight path segment. + if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS)) + { + // Ignore status return value as we're just about to return anyway. + appendPortals(apexIndex, i, closestEndPos, path, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath, options); + } + + // Ignore status return value as we're just about to return anyway. + appendVertex(closestEndPos, 0, path[i], + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + + return DT_SUCCESS | DT_PARTIAL_RESULT | ((*straightPathCount >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0); + } + + // If starting really close the portal, advance. + if (i == 0) + { + float t; + if (dtDistancePtSegSqr2D(portalApex, left, right, t) < dtSqr(0.001f)) + continue; + } + } + else + { + // End of the path. + dtVcopy(left, closestEndPos); + dtVcopy(right, closestEndPos); + + toType = DT_POLYTYPE_GROUND; + } + + // Right vertex. + if (dtTriArea2D(portalApex, portalRight, right) <= 0.0f) + { + if (dtVequal(portalApex, portalRight) || dtTriArea2D(portalApex, portalLeft, right) > 0.0f) + { + dtVcopy(portalRight, right); + rightPolyRef = (i+1 < pathSize) ? path[i+1] : 0; + rightPolyType = toType; + rightIndex = i; + } + else + { + // Append portals along the current straight path segment. + if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS)) + { + stat = appendPortals(apexIndex, leftIndex, portalLeft, path, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath, options); + if (stat != DT_IN_PROGRESS) + return stat; + } + + dtVcopy(portalApex, portalLeft); + apexIndex = leftIndex; + + unsigned char flags = 0; + if (!leftPolyRef) + flags = DT_STRAIGHTPATH_END; + else if (leftPolyType == DT_POLYTYPE_OFFMESH_CONNECTION) + flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION; + dtPolyRef ref = leftPolyRef; + + // Append or update vertex + stat = appendVertex(portalApex, flags, ref, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + if (stat != DT_IN_PROGRESS) + return stat; + + dtVcopy(portalLeft, portalApex); + dtVcopy(portalRight, portalApex); + leftIndex = apexIndex; + rightIndex = apexIndex; + + // Restart + i = apexIndex; + + continue; + } + } + + // Left vertex. + if (dtTriArea2D(portalApex, portalLeft, left) >= 0.0f) + { + if (dtVequal(portalApex, portalLeft) || dtTriArea2D(portalApex, portalRight, left) < 0.0f) + { + dtVcopy(portalLeft, left); + leftPolyRef = (i+1 < pathSize) ? path[i+1] : 0; + leftPolyType = toType; + leftIndex = i; + } + else + { + // Append portals along the current straight path segment. + if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS)) + { + stat = appendPortals(apexIndex, rightIndex, portalRight, path, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath, options); + if (stat != DT_IN_PROGRESS) + return stat; + } + + dtVcopy(portalApex, portalRight); + apexIndex = rightIndex; + + unsigned char flags = 0; + if (!rightPolyRef) + flags = DT_STRAIGHTPATH_END; + else if (rightPolyType == DT_POLYTYPE_OFFMESH_CONNECTION) + flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION; + dtPolyRef ref = rightPolyRef; + + // Append or update vertex + stat = appendVertex(portalApex, flags, ref, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + if (stat != DT_IN_PROGRESS) + return stat; + + dtVcopy(portalLeft, portalApex); + dtVcopy(portalRight, portalApex); + leftIndex = apexIndex; + rightIndex = apexIndex; + + // Restart + i = apexIndex; + + continue; + } + } + } + + // Append portals along the current straight path segment. + if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS)) + { + stat = appendPortals(apexIndex, pathSize-1, closestEndPos, path, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath, options); + if (stat != DT_IN_PROGRESS) + return stat; + } + } + + // Ignore status return value as we're just about to return anyway. + appendVertex(closestEndPos, DT_STRAIGHTPATH_END, 0, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + + return DT_SUCCESS | ((*straightPathCount >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0); +} + +/// @par +/// +/// This method is optimized for small delta movement and a small number of +/// polygons. If used for too great a distance, the result set will form an +/// incomplete path. +/// +/// @p resultPos will equal the @p endPos if the end is reached. +/// Otherwise the closest reachable position will be returned. +/// +/// @p resultPos is not projected onto the surface of the navigation +/// mesh. Use #getPolyHeight if this is needed. +/// +/// This method treats the end position in the same manner as +/// the #raycast method. (As a 2D point.) See that method's documentation +/// for details. +/// +/// If the @p visited array is too small to hold the entire result set, it will +/// be filled as far as possible from the start position toward the end +/// position. +/// +dtStatus dtNavMeshQuery::moveAlongSurface(dtPolyRef startRef, const float* startPos, const float* endPos, + const dtQueryFilter* filter, + float* resultPos, dtPolyRef* visited, int* visitedCount, const int maxVisitedSize) const +{ + dtAssert(m_nav); + dtAssert(m_tinyNodePool); + + if (!visitedCount) + return DT_FAILURE | DT_INVALID_PARAM; + + *visitedCount = 0; + + if (!m_nav->isValidPolyRef(startRef) || + !startPos || !dtVisfinite(startPos) || + !endPos || !dtVisfinite(endPos) || + !filter || !resultPos || !visited || + maxVisitedSize <= 0) + { + return DT_FAILURE | DT_INVALID_PARAM; + } + + dtStatus status = DT_SUCCESS; + + static const int MAX_STACK = 48; + dtNode* stack[MAX_STACK]; + int nstack = 0; + + m_tinyNodePool->clear(); + + dtNode* startNode = m_tinyNodePool->getNode(startRef); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_CLOSED; + stack[nstack++] = startNode; + + float bestPos[3]; + float bestDist = FLT_MAX; + dtNode* bestNode = 0; + dtVcopy(bestPos, startPos); + + // Search constraints + float searchPos[3], searchRadSqr; + dtVlerp(searchPos, startPos, endPos, 0.5f); + searchRadSqr = dtSqr(dtVdist(startPos, endPos)/2.0f + 0.001f); + + float verts[DT_VERTS_PER_POLYGON*3]; + + while (nstack) + { + // Pop front. + dtNode* curNode = stack[0]; + for (int i = 0; i < nstack-1; ++i) + stack[i] = stack[i+1]; + nstack--; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef curRef = curNode->id; + const dtMeshTile* curTile = 0; + const dtPoly* curPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(curRef, &curTile, &curPoly); + + // Collect vertices. + const int nverts = curPoly->vertCount; + for (int i = 0; i < nverts; ++i) + dtVcopy(&verts[i*3], &curTile->verts[curPoly->verts[i]*3]); + + // If target is inside the poly, stop search. + if (dtPointInPolygon(endPos, verts, nverts)) + { + bestNode = curNode; + dtVcopy(bestPos, endPos); + break; + } + + // Find wall edges and find nearest point inside the walls. + for (int i = 0, j = (int)curPoly->vertCount-1; i < (int)curPoly->vertCount; j = i++) + { + // Find links to neighbours. + static const int MAX_NEIS = 8; + int nneis = 0; + dtPolyRef neis[MAX_NEIS]; + + if (curPoly->neis[j] & DT_EXT_LINK) + { + // Tile border. + for (unsigned int k = curPoly->firstLink; k != DT_NULL_LINK; k = curTile->links[k].next) + { + const dtLink* link = &curTile->links[k]; + if (link->edge == j) + { + if (link->ref != 0) + { + const dtMeshTile* neiTile = 0; + const dtPoly* neiPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly); + if (filter->passFilter(link->ref, neiTile, neiPoly)) + { + if (nneis < MAX_NEIS) + neis[nneis++] = link->ref; + } + } + } + } + } + else if (curPoly->neis[j]) + { + const unsigned int idx = (unsigned int)(curPoly->neis[j]-1); + const dtPolyRef ref = m_nav->getPolyRefBase(curTile) | idx; + if (filter->passFilter(ref, curTile, &curTile->polys[idx])) + { + // Internal edge, encode id. + neis[nneis++] = ref; + } + } + + if (!nneis) + { + // Wall edge, calc distance. + const float* vj = &verts[j*3]; + const float* vi = &verts[i*3]; + float tseg; + const float distSqr = dtDistancePtSegSqr2D(endPos, vj, vi, tseg); + if (distSqr < bestDist) + { + // Update nearest distance. + dtVlerp(bestPos, vj,vi, tseg); + bestDist = distSqr; + bestNode = curNode; + } + } + else + { + for (int k = 0; k < nneis; ++k) + { + // Skip if no node can be allocated. + dtNode* neighbourNode = m_tinyNodePool->getNode(neis[k]); + if (!neighbourNode) + continue; + // Skip if already visited. + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Skip the link if it is too far from search constraint. + // TODO: Maybe should use getPortalPoints(), but this one is way faster. + const float* vj = &verts[j*3]; + const float* vi = &verts[i*3]; + float tseg; + float distSqr = dtDistancePtSegSqr2D(searchPos, vj, vi, tseg); + if (distSqr > searchRadSqr) + continue; + + // Mark as the node as visited and push to queue. + if (nstack < MAX_STACK) + { + neighbourNode->pidx = m_tinyNodePool->getNodeIdx(curNode); + neighbourNode->flags |= DT_NODE_CLOSED; + stack[nstack++] = neighbourNode; + } + } + } + } + } + + int n = 0; + if (bestNode) + { + // Reverse the path. + dtNode* prev = 0; + dtNode* node = bestNode; + do + { + dtNode* next = m_tinyNodePool->getNodeAtIdx(node->pidx); + node->pidx = m_tinyNodePool->getNodeIdx(prev); + prev = node; + node = next; + } + while (node); + + // Store result + node = prev; + do + { + visited[n++] = node->id; + if (n >= maxVisitedSize) + { + status |= DT_BUFFER_TOO_SMALL; + break; + } + node = m_tinyNodePool->getNodeAtIdx(node->pidx); + } + while (node); + } + + dtVcopy(resultPos, bestPos); + + *visitedCount = n; + + return status; +} + + +dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, dtPolyRef to, float* left, float* right, + unsigned char& fromType, unsigned char& toType) const +{ + dtAssert(m_nav); + + const dtMeshTile* fromTile = 0; + const dtPoly* fromPoly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly))) + return DT_FAILURE | DT_INVALID_PARAM; + fromType = fromPoly->getType(); + + const dtMeshTile* toTile = 0; + const dtPoly* toPoly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(to, &toTile, &toPoly))) + return DT_FAILURE | DT_INVALID_PARAM; + toType = toPoly->getType(); + + return getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right); +} + +// Returns portal points between two polygons. +dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile, + dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile, + float* left, float* right) const +{ + // Find the link that points to the 'to' polygon. + const dtLink* link = 0; + for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next) + { + if (fromTile->links[i].ref == to) + { + link = &fromTile->links[i]; + break; + } + } + if (!link) + return DT_FAILURE | DT_INVALID_PARAM; + + // Handle off-mesh connections. + if (fromPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + { + // Find link that points to first vertex. + for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next) + { + if (fromTile->links[i].ref == to) + { + const int v = fromTile->links[i].edge; + dtVcopy(left, &fromTile->verts[fromPoly->verts[v]*3]); + dtVcopy(right, &fromTile->verts[fromPoly->verts[v]*3]); + return DT_SUCCESS; + } + } + return DT_FAILURE | DT_INVALID_PARAM; + } + + if (toPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + { + for (unsigned int i = toPoly->firstLink; i != DT_NULL_LINK; i = toTile->links[i].next) + { + if (toTile->links[i].ref == from) + { + const int v = toTile->links[i].edge; + dtVcopy(left, &toTile->verts[toPoly->verts[v]*3]); + dtVcopy(right, &toTile->verts[toPoly->verts[v]*3]); + return DT_SUCCESS; + } + } + return DT_FAILURE | DT_INVALID_PARAM; + } + + // Find portal vertices. + const int v0 = fromPoly->verts[link->edge]; + const int v1 = fromPoly->verts[(link->edge+1) % (int)fromPoly->vertCount]; + dtVcopy(left, &fromTile->verts[v0*3]); + dtVcopy(right, &fromTile->verts[v1*3]); + + // If the link is at tile boundary, dtClamp the vertices to + // the link width. + if (link->side != 0xff) + { + // Unpack portal limits. + if (link->bmin != 0 || link->bmax != 255) + { + const float s = 1.0f/255.0f; + const float tmin = link->bmin*s; + const float tmax = link->bmax*s; + dtVlerp(left, &fromTile->verts[v0*3], &fromTile->verts[v1*3], tmin); + dtVlerp(right, &fromTile->verts[v0*3], &fromTile->verts[v1*3], tmax); + } + } + + return DT_SUCCESS; +} + +// Returns edge mid point between two polygons. +dtStatus dtNavMeshQuery::getEdgeMidPoint(dtPolyRef from, dtPolyRef to, float* mid) const +{ + float left[3], right[3]; + unsigned char fromType, toType; + if (dtStatusFailed(getPortalPoints(from, to, left,right, fromType, toType))) + return DT_FAILURE | DT_INVALID_PARAM; + mid[0] = (left[0]+right[0])*0.5f; + mid[1] = (left[1]+right[1])*0.5f; + mid[2] = (left[2]+right[2])*0.5f; + return DT_SUCCESS; +} + +dtStatus dtNavMeshQuery::getEdgeMidPoint(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile, + dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile, + float* mid) const +{ + float left[3], right[3]; + if (dtStatusFailed(getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right))) + return DT_FAILURE | DT_INVALID_PARAM; + mid[0] = (left[0]+right[0])*0.5f; + mid[1] = (left[1]+right[1])*0.5f; + mid[2] = (left[2]+right[2])*0.5f; + return DT_SUCCESS; +} + + + +/// @par +/// +/// This method is meant to be used for quick, short distance checks. +/// +/// If the path array is too small to hold the result, it will be filled as +/// far as possible from the start postion toward the end position. +/// +/// Using the Hit Parameter (t) +/// +/// If the hit parameter is a very high value (FLT_MAX), then the ray has hit +/// the end position. In this case the path represents a valid corridor to the +/// end position and the value of @p hitNormal is undefined. +/// +/// If the hit parameter is zero, then the start position is on the wall that +/// was hit and the value of @p hitNormal is undefined. +/// +/// If 0 < t < 1.0 then the following applies: +/// +/// @code +/// distanceToHitBorder = distanceToEndPosition * t +/// hitPoint = startPos + (endPos - startPos) * t +/// @endcode +/// +/// Use Case Restriction +/// +/// The raycast ignores the y-value of the end position. (2D check.) This +/// places significant limits on how it can be used. For example: +/// +/// Consider a scene where there is a main floor with a second floor balcony +/// that hangs over the main floor. So the first floor mesh extends below the +/// balcony mesh. The start position is somewhere on the first floor. The end +/// position is on the balcony. +/// +/// The raycast will search toward the end position along the first floor mesh. +/// If it reaches the end position's xz-coordinates it will indicate FLT_MAX +/// (no wall hit), meaning it reached the end position. This is one example of why +/// this method is meant for short distance checks. +/// +dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, const float* endPos, + const dtQueryFilter* filter, + float* t, float* hitNormal, dtPolyRef* path, int* pathCount, const int maxPath) const +{ + dtRaycastHit hit; + hit.path = path; + hit.maxPath = maxPath; + + dtStatus status = raycast(startRef, startPos, endPos, filter, 0, &hit); + + *t = hit.t; + if (hitNormal) + dtVcopy(hitNormal, hit.hitNormal); + if (pathCount) + *pathCount = hit.pathCount; + + return status; +} + + +/// @par +/// +/// This method is meant to be used for quick, short distance checks. +/// +/// If the path array is too small to hold the result, it will be filled as +/// far as possible from the start postion toward the end position. +/// +/// Using the Hit Parameter t of RaycastHit +/// +/// If the hit parameter is a very high value (FLT_MAX), then the ray has hit +/// the end position. In this case the path represents a valid corridor to the +/// end position and the value of @p hitNormal is undefined. +/// +/// If the hit parameter is zero, then the start position is on the wall that +/// was hit and the value of @p hitNormal is undefined. +/// +/// If 0 < t < 1.0 then the following applies: +/// +/// @code +/// distanceToHitBorder = distanceToEndPosition * t +/// hitPoint = startPos + (endPos - startPos) * t +/// @endcode +/// +/// Use Case Restriction +/// +/// The raycast ignores the y-value of the end position. (2D check.) This +/// places significant limits on how it can be used. For example: +/// +/// Consider a scene where there is a main floor with a second floor balcony +/// that hangs over the main floor. So the first floor mesh extends below the +/// balcony mesh. The start position is somewhere on the first floor. The end +/// position is on the balcony. +/// +/// The raycast will search toward the end position along the first floor mesh. +/// If it reaches the end position's xz-coordinates it will indicate FLT_MAX +/// (no wall hit), meaning it reached the end position. This is one example of why +/// this method is meant for short distance checks. +/// +dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, const float* endPos, + const dtQueryFilter* filter, const unsigned int options, + dtRaycastHit* hit, dtPolyRef prevRef) const +{ + dtAssert(m_nav); + + if (!hit) + return DT_FAILURE | DT_INVALID_PARAM; + + hit->t = 0; + hit->pathCount = 0; + hit->pathCost = 0; + + // Validate input + if (!m_nav->isValidPolyRef(startRef) || + !startPos || !dtVisfinite(startPos) || + !endPos || !dtVisfinite(endPos) || + !filter || + (prevRef && !m_nav->isValidPolyRef(prevRef))) + { + return DT_FAILURE | DT_INVALID_PARAM; + } + + float dir[3], curPos[3], lastPos[3]; + float verts[DT_VERTS_PER_POLYGON*3+3]; + int n = 0; + + dtVcopy(curPos, startPos); + dtVsub(dir, endPos, startPos); + dtVset(hit->hitNormal, 0, 0, 0); + + dtStatus status = DT_SUCCESS; + + const dtMeshTile* prevTile, *tile, *nextTile; + const dtPoly* prevPoly, *poly, *nextPoly; + dtPolyRef curRef; + + // The API input has been checked already, skip checking internal data. + curRef = startRef; + tile = 0; + poly = 0; + m_nav->getTileAndPolyByRefUnsafe(curRef, &tile, &poly); + nextTile = prevTile = tile; + nextPoly = prevPoly = poly; + if (prevRef) + m_nav->getTileAndPolyByRefUnsafe(prevRef, &prevTile, &prevPoly); + + while (curRef) + { + // Cast ray against current polygon. + + // Collect vertices. + int nv = 0; + for (int i = 0; i < (int)poly->vertCount; ++i) + { + dtVcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]); + nv++; + } + + float tmin, tmax; + int segMin, segMax; + if (!dtIntersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax)) + { + // Could not hit the polygon, keep the old t and report hit. + hit->pathCount = n; + return status; + } + + hit->hitEdgeIndex = segMax; + + // Keep track of furthest t so far. + if (tmax > hit->t) + hit->t = tmax; + + // Store visited polygons. + if (n < hit->maxPath) + hit->path[n++] = curRef; + else + status |= DT_BUFFER_TOO_SMALL; + + // Ray end is completely inside the polygon. + if (segMax == -1) + { + hit->t = FLT_MAX; + hit->pathCount = n; + + // add the cost + if (options & DT_RAYCAST_USE_COSTS) + hit->pathCost += filter->getCost(curPos, endPos, prevRef, prevTile, prevPoly, curRef, tile, poly, curRef, tile, poly); + return status; + } + + // Follow neighbours. + dtPolyRef nextRef = 0; + + for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next) + { + const dtLink* link = &tile->links[i]; + + // Find link which contains this edge. + if ((int)link->edge != segMax) + continue; + + // Get pointer to the next polygon. + nextTile = 0; + nextPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(link->ref, &nextTile, &nextPoly); + + // Skip off-mesh connections. + if (nextPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + + // Skip links based on filter. + if (!filter->passFilter(link->ref, nextTile, nextPoly)) + continue; + + // If the link is internal, just return the ref. + if (link->side == 0xff) + { + nextRef = link->ref; + break; + } + + // If the link is at tile boundary, + + // Check if the link spans the whole edge, and accept. + if (link->bmin == 0 && link->bmax == 255) + { + nextRef = link->ref; + break; + } + + // Check for partial edge links. + const int v0 = poly->verts[link->edge]; + const int v1 = poly->verts[(link->edge+1) % poly->vertCount]; + const float* left = &tile->verts[v0*3]; + const float* right = &tile->verts[v1*3]; + + // Check that the intersection lies inside the link portal. + if (link->side == 0 || link->side == 4) + { + // Calculate link size. + const float s = 1.0f/255.0f; + float lmin = left[2] + (right[2] - left[2])*(link->bmin*s); + float lmax = left[2] + (right[2] - left[2])*(link->bmax*s); + if (lmin > lmax) dtSwap(lmin, lmax); + + // Find Z intersection. + float z = startPos[2] + (endPos[2]-startPos[2])*tmax; + if (z >= lmin && z <= lmax) + { + nextRef = link->ref; + break; + } + } + else if (link->side == 2 || link->side == 6) + { + // Calculate link size. + const float s = 1.0f/255.0f; + float lmin = left[0] + (right[0] - left[0])*(link->bmin*s); + float lmax = left[0] + (right[0] - left[0])*(link->bmax*s); + if (lmin > lmax) dtSwap(lmin, lmax); + + // Find X intersection. + float x = startPos[0] + (endPos[0]-startPos[0])*tmax; + if (x >= lmin && x <= lmax) + { + nextRef = link->ref; + break; + } + } + } + + // add the cost + if (options & DT_RAYCAST_USE_COSTS) + { + // compute the intersection point at the furthest end of the polygon + // and correct the height (since the raycast moves in 2d) + dtVcopy(lastPos, curPos); + dtVmad(curPos, startPos, dir, hit->t); + float* e1 = &verts[segMax*3]; + float* e2 = &verts[((segMax+1)%nv)*3]; + float eDir[3], diff[3]; + dtVsub(eDir, e2, e1); + dtVsub(diff, curPos, e1); + float s = dtSqr(eDir[0]) > dtSqr(eDir[2]) ? diff[0] / eDir[0] : diff[2] / eDir[2]; + curPos[1] = e1[1] + eDir[1] * s; + + hit->pathCost += filter->getCost(lastPos, curPos, prevRef, prevTile, prevPoly, curRef, tile, poly, nextRef, nextTile, nextPoly); + } + + if (!nextRef) + { + // No neighbour, we hit a wall. + + // Calculate hit normal. + const int a = segMax; + const int b = segMax+1 < nv ? segMax+1 : 0; + const float* va = &verts[a*3]; + const float* vb = &verts[b*3]; + const float dx = vb[0] - va[0]; + const float dz = vb[2] - va[2]; + hit->hitNormal[0] = dz; + hit->hitNormal[1] = 0; + hit->hitNormal[2] = -dx; + dtVnormalize(hit->hitNormal); + + hit->pathCount = n; + return status; + } + + // No hit, advance to neighbour polygon. + prevRef = curRef; + curRef = nextRef; + prevTile = tile; + tile = nextTile; + prevPoly = poly; + poly = nextPoly; + } + + hit->pathCount = n; + + return status; +} + +/// @par +/// +/// At least one result array must be provided. +/// +/// The order of the result set is from least to highest cost to reach the polygon. +/// +/// A common use case for this method is to perform Dijkstra searches. +/// Candidate polygons are found by searching the graph beginning at the start polygon. +/// +/// If a polygon is not found via the graph search, even if it intersects the +/// search circle, it will not be included in the result set. For example: +/// +/// polyA is the start polygon. +/// polyB shares an edge with polyA. (Is adjacent.) +/// polyC shares an edge with polyB, but not with polyA +/// Even if the search circle overlaps polyC, it will not be included in the +/// result set unless polyB is also in the set. +/// +/// The value of the center point is used as the start position for cost +/// calculations. It is not projected onto the surface of the mesh, so its +/// y-value will effect the costs. +/// +/// Intersection tests occur in 2D. All polygons and the search circle are +/// projected onto the xz-plane. So the y-value of the center point does not +/// effect intersection tests. +/// +/// If the result arrays are to small to hold the entire result set, they will be +/// filled to capacity. +/// +dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* centerPos, const float radius, + const dtQueryFilter* filter, + dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost, + int* resultCount, const int maxResult) const +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + if (!resultCount) + return DT_FAILURE | DT_INVALID_PARAM; + + *resultCount = 0; + + if (!m_nav->isValidPolyRef(startRef) || + !centerPos || !dtVisfinite(centerPos) || + radius < 0 || !dtMathIsfinite(radius) || + !filter || maxResult < 0) + { + return DT_FAILURE | DT_INVALID_PARAM; + } + + m_nodePool->clear(); + m_openList->clear(); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, centerPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + dtStatus status = DT_SUCCESS; + + int n = 0; + + const float radiusSqr = dtSqr(radius); + + while (!m_openList->empty()) + { + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly); + + // Get parent poly and tile. + dtPolyRef parentRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + if (bestNode->pidx) + parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; + if (parentRef) + m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly); + + if (n < maxResult) + { + if (resultRef) + resultRef[n] = bestRef; + if (resultParent) + resultParent[n] = parentRef; + if (resultCost) + resultCost[n] = bestNode->total; + ++n; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + const dtLink* link = &bestTile->links[i]; + dtPolyRef neighbourRef = link->ref; + // Skip invalid neighbours and do not follow back to parent. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Expand to neighbour + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + // Do not advance if the polygon is excluded by the filter. + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // Find edge and calc distance to the edge. + float va[3], vb[3]; + if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb)) + continue; + + // If the circle is not touching the next polygon, skip it. + float tseg; + float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg); + if (distSqr > radiusSqr) + continue; + + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); + if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; + continue; + } + + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Cost + if (neighbourNode->flags == 0) + dtVlerp(neighbourNode->pos, va, vb, 0.5f); + + float cost = filter->getCost( + bestNode->pos, neighbourNode->pos, + parentRef, parentTile, parentPoly, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly); + + const float total = bestNode->total + cost; + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + + neighbourNode->id = neighbourRef; + neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); + neighbourNode->total = total; + + if (neighbourNode->flags & DT_NODE_OPEN) + { + m_openList->modify(neighbourNode); + } + else + { + neighbourNode->flags = DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + } + } + + *resultCount = n; + + return status; +} + +/// @par +/// +/// The order of the result set is from least to highest cost. +/// +/// At least one result array must be provided. +/// +/// A common use case for this method is to perform Dijkstra searches. +/// Candidate polygons are found by searching the graph beginning at the start +/// polygon. +/// +/// The same intersection test restrictions that apply to findPolysAroundCircle() +/// method apply to this method. +/// +/// The 3D centroid of the search polygon is used as the start position for cost +/// calculations. +/// +/// Intersection tests occur in 2D. All polygons are projected onto the +/// xz-plane. So the y-values of the vertices do not effect intersection tests. +/// +/// If the result arrays are is too small to hold the entire result set, they will +/// be filled to capacity. +/// +dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* verts, const int nverts, + const dtQueryFilter* filter, + dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost, + int* resultCount, const int maxResult) const +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + if (!resultCount) + return DT_FAILURE | DT_INVALID_PARAM; + + *resultCount = 0; + + if (!m_nav->isValidPolyRef(startRef) || + !verts || nverts < 3 || + !filter || maxResult < 0) + { + return DT_FAILURE | DT_INVALID_PARAM; + } + + // Validate input + if (!startRef || !m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; + + m_nodePool->clear(); + m_openList->clear(); + + float centerPos[3] = {0,0,0}; + for (int i = 0; i < nverts; ++i) + dtVadd(centerPos,centerPos,&verts[i*3]); + dtVscale(centerPos,centerPos,1.0f/nverts); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, centerPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + dtStatus status = DT_SUCCESS; + + int n = 0; + + while (!m_openList->empty()) + { + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly); + + // Get parent poly and tile. + dtPolyRef parentRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + if (bestNode->pidx) + parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; + if (parentRef) + m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly); + + if (n < maxResult) + { + if (resultRef) + resultRef[n] = bestRef; + if (resultParent) + resultParent[n] = parentRef; + if (resultCost) + resultCost[n] = bestNode->total; + + ++n; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + const dtLink* link = &bestTile->links[i]; + dtPolyRef neighbourRef = link->ref; + // Skip invalid neighbours and do not follow back to parent. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Expand to neighbour + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + // Do not advance if the polygon is excluded by the filter. + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // Find edge and calc distance to the edge. + float va[3], vb[3]; + if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb)) + continue; + + // If the poly is not touching the edge to the next polygon, skip the connection it. + float tmin, tmax; + int segMin, segMax; + if (!dtIntersectSegmentPoly2D(va, vb, verts, nverts, tmin, tmax, segMin, segMax)) + continue; + if (tmin > 1.0f || tmax < 0.0f) + continue; + + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); + if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; + continue; + } + + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Cost + if (neighbourNode->flags == 0) + dtVlerp(neighbourNode->pos, va, vb, 0.5f); + + float cost = filter->getCost( + bestNode->pos, neighbourNode->pos, + parentRef, parentTile, parentPoly, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly); + + const float total = bestNode->total + cost; + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + + neighbourNode->id = neighbourRef; + neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); + neighbourNode->total = total; + + if (neighbourNode->flags & DT_NODE_OPEN) + { + m_openList->modify(neighbourNode); + } + else + { + neighbourNode->flags = DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + } + } + + *resultCount = n; + + return status; +} + +dtStatus dtNavMeshQuery::getPathFromDijkstraSearch(dtPolyRef endRef, dtPolyRef* path, int* pathCount, int maxPath) const +{ + if (!m_nav->isValidPolyRef(endRef) || !path || !pathCount || maxPath < 0) + return DT_FAILURE | DT_INVALID_PARAM; + + *pathCount = 0; + + dtNode* endNode; + if (m_nodePool->findNodes(endRef, &endNode, 1) != 1 || + (endNode->flags & DT_NODE_CLOSED) == 0) + return DT_FAILURE | DT_INVALID_PARAM; + + return getPathToNode(endNode, path, pathCount, maxPath); +} + +/// @par +/// +/// This method is optimized for a small search radius and small number of result +/// polygons. +/// +/// Candidate polygons are found by searching the navigation graph beginning at +/// the start polygon. +/// +/// The same intersection test restrictions that apply to the findPolysAroundCircle +/// mehtod applies to this method. +/// +/// The value of the center point is used as the start point for cost calculations. +/// It is not projected onto the surface of the mesh, so its y-value will effect +/// the costs. +/// +/// Intersection tests occur in 2D. All polygons and the search circle are +/// projected onto the xz-plane. So the y-value of the center point does not +/// effect intersection tests. +/// +/// If the result arrays are is too small to hold the entire result set, they will +/// be filled to capacity. +/// +dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float* centerPos, const float radius, + const dtQueryFilter* filter, + dtPolyRef* resultRef, dtPolyRef* resultParent, + int* resultCount, const int maxResult) const +{ + dtAssert(m_nav); + dtAssert(m_tinyNodePool); + + if (!resultCount) + return DT_FAILURE | DT_INVALID_PARAM; + + *resultCount = 0; + + if (!m_nav->isValidPolyRef(startRef) || + !centerPos || !dtVisfinite(centerPos) || + radius < 0 || !dtMathIsfinite(radius) || + !filter || maxResult < 0) + { + return DT_FAILURE | DT_INVALID_PARAM; + } + + static const int MAX_STACK = 48; + dtNode* stack[MAX_STACK]; + int nstack = 0; + + m_tinyNodePool->clear(); + + dtNode* startNode = m_tinyNodePool->getNode(startRef); + startNode->pidx = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_CLOSED; + stack[nstack++] = startNode; + + const float radiusSqr = dtSqr(radius); + + float pa[DT_VERTS_PER_POLYGON*3]; + float pb[DT_VERTS_PER_POLYGON*3]; + + dtStatus status = DT_SUCCESS; + + int n = 0; + if (n < maxResult) + { + resultRef[n] = startNode->id; + if (resultParent) + resultParent[n] = 0; + ++n; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + + while (nstack) + { + // Pop front. + dtNode* curNode = stack[0]; + for (int i = 0; i < nstack-1; ++i) + stack[i] = stack[i+1]; + nstack--; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef curRef = curNode->id; + const dtMeshTile* curTile = 0; + const dtPoly* curPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(curRef, &curTile, &curPoly); + + for (unsigned int i = curPoly->firstLink; i != DT_NULL_LINK; i = curTile->links[i].next) + { + const dtLink* link = &curTile->links[i]; + dtPolyRef neighbourRef = link->ref; + // Skip invalid neighbours. + if (!neighbourRef) + continue; + + // Skip if cannot alloca more nodes. + dtNode* neighbourNode = m_tinyNodePool->getNode(neighbourRef); + if (!neighbourNode) + continue; + // Skip visited. + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Expand to neighbour + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + // Skip off-mesh connections. + if (neighbourPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + + // Do not advance if the polygon is excluded by the filter. + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // Find edge and calc distance to the edge. + float va[3], vb[3]; + if (!getPortalPoints(curRef, curPoly, curTile, neighbourRef, neighbourPoly, neighbourTile, va, vb)) + continue; + + // If the circle is not touching the next polygon, skip it. + float tseg; + float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg); + if (distSqr > radiusSqr) + continue; + + // Mark node visited, this is done before the overlap test so that + // we will not visit the poly again if the test fails. + neighbourNode->flags |= DT_NODE_CLOSED; + neighbourNode->pidx = m_tinyNodePool->getNodeIdx(curNode); + + // Check that the polygon does not collide with existing polygons. + + // Collect vertices of the neighbour poly. + const int npa = neighbourPoly->vertCount; + for (int k = 0; k < npa; ++k) + dtVcopy(&pa[k*3], &neighbourTile->verts[neighbourPoly->verts[k]*3]); + + bool overlap = false; + for (int j = 0; j < n; ++j) + { + dtPolyRef pastRef = resultRef[j]; + + // Connected polys do not overlap. + bool connected = false; + for (unsigned int k = curPoly->firstLink; k != DT_NULL_LINK; k = curTile->links[k].next) + { + if (curTile->links[k].ref == pastRef) + { + connected = true; + break; + } + } + if (connected) + continue; + + // Potentially overlapping. + const dtMeshTile* pastTile = 0; + const dtPoly* pastPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(pastRef, &pastTile, &pastPoly); + + // Get vertices and test overlap + const int npb = pastPoly->vertCount; + for (int k = 0; k < npb; ++k) + dtVcopy(&pb[k*3], &pastTile->verts[pastPoly->verts[k]*3]); + + if (dtOverlapPolyPoly2D(pa,npa, pb,npb)) + { + overlap = true; + break; + } + } + if (overlap) + continue; + + // This poly is fine, store and advance to the poly. + if (n < maxResult) + { + resultRef[n] = neighbourRef; + if (resultParent) + resultParent[n] = curRef; + ++n; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + + if (nstack < MAX_STACK) + { + stack[nstack++] = neighbourNode; + } + } + } + + *resultCount = n; + + return status; +} + + +struct dtSegInterval +{ + dtPolyRef ref; + short tmin, tmax; +}; + +static void insertInterval(dtSegInterval* ints, int& nints, const int maxInts, + const short tmin, const short tmax, const dtPolyRef ref) +{ + if (nints+1 > maxInts) return; + // Find insertion point. + int idx = 0; + while (idx < nints) + { + if (tmax <= ints[idx].tmin) + break; + idx++; + } + // Move current results. + if (nints-idx) + memmove(ints+idx+1, ints+idx, sizeof(dtSegInterval)*(nints-idx)); + // Store + ints[idx].ref = ref; + ints[idx].tmin = tmin; + ints[idx].tmax = tmax; + nints++; +} + +/// @par +/// +/// If the @p segmentRefs parameter is provided, then all polygon segments will be returned. +/// Otherwise only the wall segments are returned. +/// +/// A segment that is normally a portal will be included in the result set as a +/// wall if the @p filter results in the neighbor polygon becoomming impassable. +/// +/// The @p segmentVerts and @p segmentRefs buffers should normally be sized for the +/// maximum segments per polygon of the source navigation mesh. +/// +dtStatus dtNavMeshQuery::getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* filter, + float* segmentVerts, dtPolyRef* segmentRefs, int* segmentCount, + const int maxSegments) const +{ + dtAssert(m_nav); + + if (!segmentCount) + return DT_FAILURE | DT_INVALID_PARAM; + + *segmentCount = 0; + + const dtMeshTile* tile = 0; + const dtPoly* poly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly))) + return DT_FAILURE | DT_INVALID_PARAM; + + if (!filter || !segmentVerts || maxSegments < 0) + return DT_FAILURE | DT_INVALID_PARAM; + + int n = 0; + static const int MAX_INTERVAL = 16; + dtSegInterval ints[MAX_INTERVAL]; + int nints; + + const bool storePortals = segmentRefs != 0; + + dtStatus status = DT_SUCCESS; + + for (int i = 0, j = (int)poly->vertCount-1; i < (int)poly->vertCount; j = i++) + { + // Skip non-solid edges. + nints = 0; + if (poly->neis[j] & DT_EXT_LINK) + { + // Tile border. + for (unsigned int k = poly->firstLink; k != DT_NULL_LINK; k = tile->links[k].next) + { + const dtLink* link = &tile->links[k]; + if (link->edge == j) + { + if (link->ref != 0) + { + const dtMeshTile* neiTile = 0; + const dtPoly* neiPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly); + if (filter->passFilter(link->ref, neiTile, neiPoly)) + { + insertInterval(ints, nints, MAX_INTERVAL, link->bmin, link->bmax, link->ref); + } + } + } + } + } + else + { + // Internal edge + dtPolyRef neiRef = 0; + if (poly->neis[j]) + { + const unsigned int idx = (unsigned int)(poly->neis[j]-1); + neiRef = m_nav->getPolyRefBase(tile) | idx; + if (!filter->passFilter(neiRef, tile, &tile->polys[idx])) + neiRef = 0; + } + + // If the edge leads to another polygon and portals are not stored, skip. + if (neiRef != 0 && !storePortals) + continue; + + if (n < maxSegments) + { + const float* vj = &tile->verts[poly->verts[j]*3]; + const float* vi = &tile->verts[poly->verts[i]*3]; + float* seg = &segmentVerts[n*6]; + dtVcopy(seg+0, vj); + dtVcopy(seg+3, vi); + if (segmentRefs) + segmentRefs[n] = neiRef; + n++; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + + continue; + } + + // Add sentinels + insertInterval(ints, nints, MAX_INTERVAL, -1, 0, 0); + insertInterval(ints, nints, MAX_INTERVAL, 255, 256, 0); + + // Store segments. + const float* vj = &tile->verts[poly->verts[j]*3]; + const float* vi = &tile->verts[poly->verts[i]*3]; + for (int k = 1; k < nints; ++k) + { + // Portal segment. + if (storePortals && ints[k].ref) + { + const float tmin = ints[k].tmin/255.0f; + const float tmax = ints[k].tmax/255.0f; + if (n < maxSegments) + { + float* seg = &segmentVerts[n*6]; + dtVlerp(seg+0, vj,vi, tmin); + dtVlerp(seg+3, vj,vi, tmax); + if (segmentRefs) + segmentRefs[n] = ints[k].ref; + n++; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + } + + // Wall segment. + const int imin = ints[k-1].tmax; + const int imax = ints[k].tmin; + if (imin != imax) + { + const float tmin = imin/255.0f; + const float tmax = imax/255.0f; + if (n < maxSegments) + { + float* seg = &segmentVerts[n*6]; + dtVlerp(seg+0, vj,vi, tmin); + dtVlerp(seg+3, vj,vi, tmax); + if (segmentRefs) + segmentRefs[n] = 0; + n++; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + } + } + } + + *segmentCount = n; + + return status; +} + +/// @par +/// +/// @p hitPos is not adjusted using the height detail data. +/// +/// @p hitDist will equal the search radius if there is no wall within the +/// radius. In this case the values of @p hitPos and @p hitNormal are +/// undefined. +/// +/// The normal will become unpredicable if @p hitDist is a very small number. +/// +dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* centerPos, const float maxRadius, + const dtQueryFilter* filter, + float* hitDist, float* hitPos, float* hitNormal) const +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + // Validate input + if (!m_nav->isValidPolyRef(startRef) || + !centerPos || !dtVisfinite(centerPos) || + maxRadius < 0 || !dtMathIsfinite(maxRadius) || + !filter || !hitDist || !hitPos || !hitNormal) + { + return DT_FAILURE | DT_INVALID_PARAM; + } + + m_nodePool->clear(); + m_openList->clear(); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, centerPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + float radiusSqr = dtSqr(maxRadius); + + dtStatus status = DT_SUCCESS; + + while (!m_openList->empty()) + { + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly); + + // Get parent poly and tile. + dtPolyRef parentRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + if (bestNode->pidx) + parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; + if (parentRef) + m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly); + + // Hit test walls. + for (int i = 0, j = (int)bestPoly->vertCount-1; i < (int)bestPoly->vertCount; j = i++) + { + // Skip non-solid edges. + if (bestPoly->neis[j] & DT_EXT_LINK) + { + // Tile border. + bool solid = true; + for (unsigned int k = bestPoly->firstLink; k != DT_NULL_LINK; k = bestTile->links[k].next) + { + const dtLink* link = &bestTile->links[k]; + if (link->edge == j) + { + if (link->ref != 0) + { + const dtMeshTile* neiTile = 0; + const dtPoly* neiPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly); + if (filter->passFilter(link->ref, neiTile, neiPoly)) + solid = false; + } + break; + } + } + if (!solid) continue; + } + else if (bestPoly->neis[j]) + { + // Internal edge + const unsigned int idx = (unsigned int)(bestPoly->neis[j]-1); + const dtPolyRef ref = m_nav->getPolyRefBase(bestTile) | idx; + if (filter->passFilter(ref, bestTile, &bestTile->polys[idx])) + continue; + } + + // Calc distance to the edge. + const float* vj = &bestTile->verts[bestPoly->verts[j]*3]; + const float* vi = &bestTile->verts[bestPoly->verts[i]*3]; + float tseg; + float distSqr = dtDistancePtSegSqr2D(centerPos, vj, vi, tseg); + + // Edge is too far, skip. + if (distSqr > radiusSqr) + continue; + + // Hit wall, update radius. + radiusSqr = distSqr; + // Calculate hit pos. + hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg; + hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg; + hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg; + } + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + const dtLink* link = &bestTile->links[i]; + dtPolyRef neighbourRef = link->ref; + // Skip invalid neighbours and do not follow back to parent. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Expand to neighbour. + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + // Skip off-mesh connections. + if (neighbourPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + + // Calc distance to the edge. + const float* va = &bestTile->verts[bestPoly->verts[link->edge]*3]; + const float* vb = &bestTile->verts[bestPoly->verts[(link->edge+1) % bestPoly->vertCount]*3]; + float tseg; + float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg); + + // If the circle is not touching the next polygon, skip it. + if (distSqr > radiusSqr) + continue; + + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); + if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; + continue; + } + + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Cost + if (neighbourNode->flags == 0) + { + getEdgeMidPoint(bestRef, bestPoly, bestTile, + neighbourRef, neighbourPoly, neighbourTile, neighbourNode->pos); + } + + const float total = bestNode->total + dtVdist(bestNode->pos, neighbourNode->pos); + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + + neighbourNode->id = neighbourRef; + neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED); + neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); + neighbourNode->total = total; + + if (neighbourNode->flags & DT_NODE_OPEN) + { + m_openList->modify(neighbourNode); + } + else + { + neighbourNode->flags |= DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + } + } + + // Calc hit normal. + dtVsub(hitNormal, centerPos, hitPos); + dtVnormalize(hitNormal); + + *hitDist = dtMathSqrtf(radiusSqr); + + return status; +} + +bool dtNavMeshQuery::isValidPolyRef(dtPolyRef ref, const dtQueryFilter* filter) const +{ + const dtMeshTile* tile = 0; + const dtPoly* poly = 0; + dtStatus status = m_nav->getTileAndPolyByRef(ref, &tile, &poly); + // If cannot get polygon, assume it does not exists and boundary is invalid. + if (dtStatusFailed(status)) + return false; + // If cannot pass filter, assume flags has changed and boundary is invalid. + if (!filter->passFilter(ref, tile, poly)) + return false; + return true; +} + +/// @par +/// +/// The closed list is the list of polygons that were fully evaluated during +/// the last navigation graph search. (A* or Dijkstra) +/// +bool dtNavMeshQuery::isInClosedList(dtPolyRef ref) const +{ + if (!m_nodePool) return false; + + dtNode* nodes[DT_MAX_STATES_PER_NODE]; + int n= m_nodePool->findNodes(ref, nodes, DT_MAX_STATES_PER_NODE); + + for (int i=0; iflags & DT_NODE_CLOSED) + return true; + } + + return false; +} diff --git a/Pathing/Detour/Source/DetourNode.cpp b/Pathing/Detour/Source/DetourNode.cpp new file mode 100644 index 0000000000..48abbba6b5 --- /dev/null +++ b/Pathing/Detour/Source/DetourNode.cpp @@ -0,0 +1,200 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include "DetourNode.h" +#include "DetourAlloc.h" +#include "DetourAssert.h" +#include "DetourCommon.h" +#include + +#ifdef DT_POLYREF64 +// From Thomas Wang, https://gist.github.com/badboy/6267743 +inline unsigned int dtHashRef(dtPolyRef a) +{ + a = (~a) + (a << 18); // a = (a << 18) - a - 1; + a = a ^ (a >> 31); + a = a * 21; // a = (a + (a << 2)) + (a << 4); + a = a ^ (a >> 11); + a = a + (a << 6); + a = a ^ (a >> 22); + return (unsigned int)a; +} +#else +inline unsigned int dtHashRef(dtPolyRef a) +{ + a += ~(a<<15); + a ^= (a>>10); + a += (a<<3); + a ^= (a>>6); + a += ~(a<<11); + a ^= (a>>16); + return (unsigned int)a; +} +#endif + +////////////////////////////////////////////////////////////////////////////////////////// +dtNodePool::dtNodePool(int maxNodes, int hashSize) : + m_nodes(0), + m_first(0), + m_next(0), + m_maxNodes(maxNodes), + m_hashSize(hashSize), + m_nodeCount(0) +{ + dtAssert(dtNextPow2(m_hashSize) == (unsigned int)m_hashSize); + // pidx is special as 0 means "none" and 1 is the first node. For that reason + // we have 1 fewer nodes available than the number of values it can contain. + dtAssert(m_maxNodes > 0 && m_maxNodes <= DT_NULL_IDX && m_maxNodes <= (1 << DT_NODE_PARENT_BITS) - 1); + + m_nodes = (dtNode*)dtAlloc(sizeof(dtNode)*m_maxNodes, DT_ALLOC_PERM); + m_next = (dtNodeIndex*)dtAlloc(sizeof(dtNodeIndex)*m_maxNodes, DT_ALLOC_PERM); + m_first = (dtNodeIndex*)dtAlloc(sizeof(dtNodeIndex)*hashSize, DT_ALLOC_PERM); + + dtAssert(m_nodes); + dtAssert(m_next); + dtAssert(m_first); + + memset(m_first, 0xff, sizeof(dtNodeIndex)*m_hashSize); + memset(m_next, 0xff, sizeof(dtNodeIndex)*m_maxNodes); +} + +dtNodePool::~dtNodePool() +{ + dtFree(m_nodes); + dtFree(m_next); + dtFree(m_first); +} + +void dtNodePool::clear() +{ + memset(m_first, 0xff, sizeof(dtNodeIndex)*m_hashSize); + m_nodeCount = 0; +} + +unsigned int dtNodePool::findNodes(dtPolyRef id, dtNode** nodes, const int maxNodes) +{ + int n = 0; + unsigned int bucket = dtHashRef(id) & (m_hashSize-1); + dtNodeIndex i = m_first[bucket]; + while (i != DT_NULL_IDX) + { + if (m_nodes[i].id == id) + { + if (n >= maxNodes) + return n; + nodes[n++] = &m_nodes[i]; + } + i = m_next[i]; + } + + return n; +} + +dtNode* dtNodePool::findNode(dtPolyRef id, unsigned char state) +{ + unsigned int bucket = dtHashRef(id) & (m_hashSize-1); + dtNodeIndex i = m_first[bucket]; + while (i != DT_NULL_IDX) + { + if (m_nodes[i].id == id && m_nodes[i].state == state) + return &m_nodes[i]; + i = m_next[i]; + } + return 0; +} + +dtNode* dtNodePool::getNode(dtPolyRef id, unsigned char state) +{ + unsigned int bucket = dtHashRef(id) & (m_hashSize-1); + dtNodeIndex i = m_first[bucket]; + dtNode* node = 0; + while (i != DT_NULL_IDX) + { + if (m_nodes[i].id == id && m_nodes[i].state == state) + return &m_nodes[i]; + i = m_next[i]; + } + + if (m_nodeCount >= m_maxNodes) + return 0; + + i = (dtNodeIndex)m_nodeCount; + m_nodeCount++; + + // Init node + node = &m_nodes[i]; + node->pidx = 0; + node->cost = 0; + node->total = 0; + node->id = id; + node->state = state; + node->flags = 0; + + m_next[i] = m_first[bucket]; + m_first[bucket] = i; + + return node; +} + + +////////////////////////////////////////////////////////////////////////////////////////// +dtNodeQueue::dtNodeQueue(int n) : + m_heap(0), + m_capacity(n), + m_size(0) +{ + dtAssert(m_capacity > 0); + + m_heap = (dtNode**)dtAlloc(sizeof(dtNode*)*(m_capacity+1), DT_ALLOC_PERM); + dtAssert(m_heap); +} + +dtNodeQueue::~dtNodeQueue() +{ + dtFree(m_heap); +} + +void dtNodeQueue::bubbleUp(int i, dtNode* node) +{ + int parent = (i-1)/2; + // note: (index > 0) means there is a parent + while ((i > 0) && (m_heap[parent]->total > node->total)) + { + m_heap[i] = m_heap[parent]; + i = parent; + parent = (i-1)/2; + } + m_heap[i] = node; +} + +void dtNodeQueue::trickleDown(int i, dtNode* node) +{ + int child = (i*2)+1; + while (child < m_size) + { + if (((child+1) < m_size) && + (m_heap[child]->total > m_heap[child+1]->total)) + { + child++; + } + m_heap[i] = m_heap[child]; + i = child; + child = (i*2)+1; + } + bubbleUp(i, node); +} diff --git a/Pathing/Detour/Test/main.cpp b/Pathing/Detour/Test/main.cpp new file mode 100644 index 0000000000..e6441fcbf0 --- /dev/null +++ b/Pathing/Detour/Test/main.cpp @@ -0,0 +1,172 @@ +#include "dol_detour.hpp" + +#include +#include +#include +#include +#include + +auto const FACTOR = 1.0 / 32.0f; + +static dtNavMesh *navMesh; +static dtNavMeshQuery *query; + +static auto defaultInclude = (dtPolyFlags)(dtPolyFlags::ALL ^ dtPolyFlags::DISABLED); +static auto defaultExclude = (dtPolyFlags)0; +static dtPolyFlags filter[] = {defaultInclude, defaultExclude}; + +void test_FindRandomPointAroundCircle(dtNavMeshQuery *query) +{ + for (int i = 0; i < 1000; ++i) + { + float center[] = {31000 * FACTOR, 15800 * FACTOR, 33750 * FACTOR}; + float polyPick[] = {2.0f, 4.0f, 2.0f}; + float output[3]; + auto status = FindRandomPointAroundCircle(query, center, 512 * FACTOR, polyPick, filter, output); + if (!dtStatusSucceed(status)) + throw i; + } +} + +void test_FindClosestPoint(dtNavMeshQuery *query) +{ + for (int i = 0; i < 1000; ++i) + { + float center[] = {31000 * FACTOR, 15800 * FACTOR, 33750 * FACTOR}; + float range[] = {512 * FACTOR, 256 * FACTOR, 512 * FACTOR}; + float output[3]; + auto status = FindClosestPoint(query, center, range, filter, output); + if (!dtStatusSucceed(status)) + throw i; + } +} + +void test_PathStraight__AREA(dtNavMeshQuery *query) +{ + for (int i = 0; i < 1000; ++i) + { + float start[] = {30893 * FACTOR, 15637 * FACTOR, 33758 * FACTOR}; + float end[] = {31095 * FACTOR, 15511 * FACTOR, 33902 * FACTOR}; + float polyPick[] = {64 * FACTOR, 256 * FACTOR, 64 * FACTOR}; + int pointCount; + float pointBuffer[MAX_POLY]; + dtPolyFlags pointFlags[MAX_POLY]; + auto status = PathStraight(query, start, end, polyPick, filter, dtStraightPathOptions::DT_STRAIGHTPATH_AREA_CROSSINGS, &pointCount, pointBuffer, pointFlags); + if (!dtStatusSucceed(status)) + throw i; + } +} + +void test_PathStraight__ALL(dtNavMeshQuery *query) +{ + for (int i = 0; i < 1000; ++i) + { + float start[] = {30893 * FACTOR, 15637 * FACTOR, 33758 * FACTOR}; + float end[] = {31095 * FACTOR, 15511 * FACTOR, 33902 * FACTOR}; + float polyPick[] = {64 * FACTOR, 256 * FACTOR, 64 * FACTOR}; + int pointCount; + float pointBuffer[MAX_POLY]; + dtPolyFlags pointFlags[MAX_POLY]; + auto status = PathStraight(query, start, end, polyPick, filter, dtStraightPathOptions::DT_STRAIGHTPATH_ALL_CROSSINGS, &pointCount, pointBuffer, pointFlags); + if (!dtStatusSucceed(status)) + throw i; + } +} + +int main(int ac, char const *const *av) +{ + if (!std::filesystem::exists("./zone078.nav")) + std::filesystem::current_path(".."); + if (!std::filesystem::exists("./zone078.nav")) + { + std::cerr << "zone078.nav not found" << std::endl; + return 1; + } + + std::cout << "Load nav mesh zone078.nav: "; + if (!LoadNavMesh("zone078.nav", &navMesh)) + { + std::cout << "KO" << std::endl; + return 1; + } + std::cout << "OK" << std::endl; + std::cout << "Create nav mesh query"; + if (!CreateNavMeshQuery(navMesh, &query)) + { + std::cout << "KO" << std::endl; + return 1; + } + std::cout << "OK" << std::endl; + +#define TEST(func) \ + do \ + { \ + std::cout << #func << "..."; \ + auto start = std::chrono::system_clock::now(); \ + try \ + { \ + func(query); \ + std::cout << "OK (" << std::chrono::duration_cast(std::chrono::system_clock::now() - start).count() << "ms)" << std::endl; \ + } \ + catch (...) \ + { \ + std::cout << "KO" << std::endl; \ + } \ + } while (0) + + TEST(test_FindRandomPointAroundCircle); + TEST(test_FindClosestPoint); + TEST(test_PathStraight__AREA); + TEST(test_PathStraight__ALL); + + std::cout << "=== MULTIHREADS ===\n"; + +#define TEST_THREADED(func) \ + do \ + { \ + std::cout << #func << "..."; \ + auto start = std::chrono::system_clock::now(); \ + try \ + { \ + std::vector threads; \ + std::vector queries; \ + for (int i = 0; i < 16; ++i) \ + { \ + dtNavMeshQuery *query; \ + CreateNavMeshQuery(navMesh, &query); \ + queries.push_back(query); \ + threads.emplace_back(func, query); \ + } \ + for (auto &t : threads) \ + t.join(); \ + std::cout << "OK (" << std::chrono::duration_cast(std::chrono::system_clock::now() - start).count() << "ms)" << std::endl; \ + for (auto query : queries) \ + FreeNavMeshQuery(query); \ + } \ + catch (...) \ + { \ + std::cout << "KO" << std::endl; \ + } \ + } while (0) + + TEST_THREADED(test_FindRandomPointAroundCircle); + TEST_THREADED(test_FindClosestPoint); + TEST_THREADED(test_PathStraight__AREA); + TEST_THREADED(test_PathStraight__ALL); + + std::cout << "Free nav mesh query: "; + if (!FreeNavMeshQuery(query)) + { + std::cout << "KO" << std::endl; + return 1; + } + std::cout << "OK" << std::endl; + std::cout << "Free nav mesh: "; + if (!FreeNavMesh(navMesh)) + { + std::cout << "KO" << std::endl; + return 1; + } + std::cout << "OK" << std::endl; + return 0; +} diff --git a/Pathing/Detour/Test/zone078.nav b/Pathing/Detour/Test/zone078.nav new file mode 100644 index 0000000000..c3ee887226 Binary files /dev/null and b/Pathing/Detour/Test/zone078.nav differ