-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
256 lines (192 loc) · 11.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
import numpy as np
from torchtext import data
import logging
import random
import argparse
from data.data import DocField, DocDataset, DocIter, GraphField
import time
from model.seq2seq import train, decode
from pathlib import Path
import json
def parse_args():
parser = argparse.ArgumentParser(description='Train a Transformer / FastTransformer.')
# dataset settings
parser.add_argument('--corpus', type=str, nargs='+')
parser.add_argument('--lang', type=str, nargs='+', help="the suffix of the corpus, translation language")
parser.add_argument('--valid', type=str, nargs='+')
parser.add_argument('--writetrans', type=str, help='write translations for to a file')
parser.add_argument('--ref', type=str, help='references, word unit')
parser.add_argument('--vocab', type=str)
parser.add_argument('--vocab_size', type=int, default=40000)
parser.add_argument('--load_vocab', action='store_true', help='load a pre-computed vocabulary')
# parser.add_argument('--load_corpus', action='store_true', default=False, help='load a pre-processed corpus')
# parser.add_argument('--save_corpus', action='store_true', default=False, help='save a pre-processed corpus')
parser.add_argument('--max_len', type=int, default=None, help='limit the train set sentences to this many tokens')
# parser.add_argument('--max_train_data', type=int, default=None,
# help='limit the train set sentences to this many sentences')
parser.add_argument('--pool', type=int, default=100, help='shuffle batches in the pool')
# model name
parser.add_argument('--model', type=str, default='[time]', help='prefix to denote the model, nothing or [time]')
# network settings
parser.add_argument('--share_embed', action='store_true', default=False,
help='share embeddings and linear out weight')
parser.add_argument('--share_vocab', action='store_true', default=False,
help='share vocabulary between src and target')
# parser.add_argument('--ffw_block', type=str, default="residual", choices=['residual', 'highway', 'nonresidual'])
# parser.add_argument('--posi_kv', action='store_true', default=False,
# help='incorporate positional information in key/value')
parser.add_argument('--params', type=str, default='user', choices=['user', 'small', 'middle', 'big'],
help='Defines the dimension size of the parameter')
parser.add_argument('--n_layers', type=int, default=5, help='number of layers')
parser.add_argument('--n_heads', type=int, default=2, help='number of heads')
parser.add_argument('--d_emb', type=int, default=278, help='dimention size for hidden states')
parser.add_argument('--d_rnn', type=int, default=507, help='dimention size for FFN')
parser.add_argument('--d_mlp', type=int, default=507, help='dimention size for FFN')
parser.add_argument('--senenc', default='bow', help='sentence encoder')
parser.add_argument('--gnnl', default=2, type=int, help='stacked layer number')
parser.add_argument('--gnndp', default=0, type=float, help='self-att dropout')
parser.add_argument('--labeldim', default=100, type=int, help='label dim')
parser.add_argument('--agg', choices=['gate', 'att'], help='node agg method')
parser.add_argument('--reglamb', default=0, type=float)
parser.add_argument('--loss', default=0, type=int)
parser.add_argument('--entityemb', choices=['glove', 'lstm'])
parser.add_argument('--ehid', default=256, type=int)
parser.add_argument('--initnn', default='standard', help='parameter init')
parser.add_argument('--early_stop', type=int, default=0)
# running setting
parser.add_argument('--mode', type=str, default='train',
choices=['train', 'test',
'distill']) # distill : take a trained AR model and decode a training set
parser.add_argument('--seed', type=int, default=19920206, help='seed for randomness')
parser.add_argument('--keep_cpts', type=int, default=1, help='save n checkpoints, when 1 save best model only')
# training
# parser.add_argument('--tqdm', action="store_true", default=False) #???
parser.add_argument('--eval_every', type=int, default=100, help='validate every * step')
parser.add_argument('--save_every', type=int, default=-1, help='save model every * step (5000)')
parser.add_argument('--batch_size', type=int, default=2048, help='# of tokens processed per batch')
parser.add_argument('--delay', type=int, default=1, help='gradiant accumulation for delayed update for large batch')
parser.add_argument('--optimizer', type=str, default='Noam')
parser.add_argument('--lr', type=float, default=1.0, help='learning rate')
# parser.add_argument('--lr_schedule', type=str, default='transformer', choices=['transformer', 'anneal', 'fixed'])
parser.add_argument('--warmup', type=int, default=4000, help='maximum steps to linearly anneal the learning rate')
# lr decay
parser.add_argument('--lrdecay', type=float, default=0, help='learning rate decay')
parser.add_argument('--patience', type=int, default=0, help='learning rate decay 0.5')
# parser.add_argument('--anneal_steps', type=int, default=250000,
# help='maximum steps to linearly anneal the learning rate')
parser.add_argument('--maximum_steps', type=int, default=5000000, help='maximum steps you take to train a model')
parser.add_argument('--drop_ratio', type=float, default=0.1, help='dropout ratio')
parser.add_argument('--input_drop_ratio', type=float, default=0.1, help='dropout ratio only for inputs')
parser.add_argument('--grad_clip', type=float, default=0.0, help='gradient clipping')
parser.add_argument('--smoothing', type=float, default=0.0, help='label smoothing')
# decoding
parser.add_argument('--length_ratio', type=float, default=2, help='maximum lengths of decoding')
parser.add_argument('--beam_size', type=int, default=1,
help='beam-size used in Beamsearch, default using greedy decoding')
parser.add_argument('--alpha', type=float, default=0.6, help='length normalization weights')
# parser.add_argument('--T', type=float, default=1, help='softmax temperature when decoding')
parser.add_argument('--test', type=str, nargs='+', help='test src file')
# model saving/reloading, output translations
parser.add_argument('--load_from', nargs='+', default=None, help='load from 1.modelname, 2.lastnumber, 3.number')
parser.add_argument('--resume', action='store_true',
help='when resume, need other things besides parameters')
# save path
parser.add_argument('--main_path', type=str, default="./")
parser.add_argument('--model_path', type=str, default="models")
parser.add_argument('--decoding_path', type=str, default="decoding")
return parser.parse_args()
def set_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def curtime():
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
def override(args, load_dict, except_name):
for k in args.__dict__:
if k not in except_name:
args.__dict__[k] = load_dict[k]
'''
You can call `torch.load(.., map_location='cpu')`
and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint
'''
if __name__ == '__main__':
args = parse_args()
if args.mode == 'train':
if args.load_from is not None and len(args.load_from) == 1:
load_from = args.load_from[0]
print('{} load the checkpoint from {} for initilize or resume'.
format(curtime(), load_from))
checkpoint = torch.load(load_from, map_location='cpu')
else:
checkpoint = None
# if not resume(initilize), only need model parameters
if args.resume:
print('update args from checkpoint')
load_dict = checkpoint['args'].__dict__
except_name = ['mode', 'resume', 'maximum_steps']
override(args, load_dict, tuple(except_name))
main_path = Path(args.main_path)
model_path = main_path / args.model_path
decoding_path = main_path / args.decoding_path
for path in [model_path, decoding_path]:
path.mkdir(parents=True, exist_ok=True)
args.model_path = str(model_path)
args.decoding_path = str(decoding_path)
if args.model == '[time]':
args.model = time.strftime("%m.%d_%H.%M.", time.gmtime())
# setup random seeds
set_seeds(args.seed)
# special process, shuffle each document
# DOC = DocField(batch_first=True, include_lengths=True, eos_token='<eos>', init_token='<bos>')
DOC = DocField(batch_first=True, include_lengths=True)
ORDER = data.Field(batch_first=True, include_lengths=True, pad_token=0, use_vocab=False,
sequential=True)
GRAPH = GraphField(batch_first=True)
train_data = DocDataset(path=args.corpus, text_field=DOC, order_field=ORDER, graph_field=GRAPH)
dev_data = DocDataset(path=args.valid, text_field=DOC, order_field=ORDER, graph_field=GRAPH)
DOC.vocab = torch.load(args.vocab)
print('vocab {} loaded'.format(args.vocab))
args.__dict__.update({'doc_vocab': len(DOC.vocab)})
train_flag = True
train_real = DocIter(train_data, args.batch_size, device='cuda',
train=train_flag,
shuffle=train_flag,
sort_key=lambda x: len(x.doc))
devbatch = 1
dev_real = DocIter(dev_data, devbatch, device='cuda', batch_size_fn=None,
train=False, repeat=False, shuffle=False, sort=False)
args_str = json.dumps(args.__dict__, indent=4, sort_keys=True)
print(args_str)
print('{} Start training'.format(curtime()))
train(args, train_real, dev_real, (DOC, ORDER, GRAPH), checkpoint)
else:
if len(args.load_from) == 1:
load_from = '{}.best.pt'.format(args.load_from[0])
print('{} load the best checkpoint from {}'.format(curtime(), load_from))
checkpoint = torch.load(load_from, map_location='cpu')
else:
raise RuntimeError('must load model')
# when translate load_dict update args except some
print('update args from checkpoint')
load_dict = checkpoint['args'].__dict__
except_name = ['mode', 'load_from', 'test', 'writetrans', 'beam_size', 'batch_size']
override(args, load_dict, tuple(except_name))
print('{} Load test set'.format(curtime()))
DOC = DocField(batch_first=True, include_lengths=True)
ORDER = data.Field(batch_first=True, include_lengths=True, pad_token=0, use_vocab=False,
sequential=True)
GRAPH = GraphField(batch_first=True)
DOC.vocab = torch.load(args.vocab)
print('vocab {} loaded'.format(args.vocab))
args.__dict__.update({'doc_vocab': len(DOC.vocab)})
args_str = json.dumps(args.__dict__, indent=4, sort_keys=True)
print(args_str)
test_data = DocDataset(path=args.test, text_field=DOC, order_field=ORDER, graph_field=GRAPH)
test_real = DocIter(test_data, 1, device='cuda', batch_size_fn=None,
train=False, repeat=False, shuffle=False, sort=False)
print('{} Load data done'.format(curtime()))
start = time.time()
decode(args, test_real, (DOC, ORDER), checkpoint)
print('{} Decode done, time {} mins'.format(curtime(), (time.time() - start) / 60))