-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdataset.py
1599 lines (1434 loc) · 56.5 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
data generator for feeding data into pytorch models
NOTE
----
In order to avoid potential error in the methods of slicing signals and rr intervals,
one can check using the following code
.. code-block:: python
from cfg import TrainCfg
ds_train = CPSC2021(TrainCfg, task="qrs_detection", training=True)
ds_val = CPSC2021(TrainCfg, task="qrs_detection", training=False)
err_list = []
for idx, seg in enumerate(ds_train.segments):
sig, lb = ds_train[idx]
if sig.shape != (2,6000) or lb.shape != (750, 1):
print("\n"+f"segment {seg} has sig.shape = {sig.shape}, lb.shape = {lb.shape}"+"\n")
err_list.append(seg)
print(f"{idx+1}/{len(ds_train)}", end="\r")
for idx, seg in enumerate(ds_val.segments):
sig, lb = ds_val[idx]
if sig.shape != (2,6000) or lb.shape != (750, 1):
print("\n"+f"segment {seg} has sig.shape = {sig.shape}, lb.shape = {lb.shape}"+"\n")
err_list.append(seg)
print(f"{idx+1}/{len(ds_val)}", end="\r")
for idx, seg in enumerate(err_list):
path = ds_train._get_seg_data_path(seg)
os.remove(path)
path = ds_train._get_seg_ann_path(seg)
os.remove(path)
print(f"{idx+1}/{len(err_list)}", end="\r")
and similarly for the task of `rr_lstm`
"""
import json
import os
import re
import time
from copy import deepcopy
from pathlib import Path
from typing import Dict, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
from scipy import signal as SS
from scipy.io import loadmat, savemat
from torch.utils.data.dataset import Dataset
from tqdm.auto import tqdm
try:
import torch_ecg # noqa: F401
except ModuleNotFoundError:
import sys
sys.path.insert(0, str(Path(__file__).absolute().parents[2]))
from cfg import ModelCfg, TrainCfg
from torch_ecg._preprocessors import PreprocManager
from torch_ecg.cfg import CFG, DEFAULTS
from torch_ecg.databases import CPSC2021 as CR
from torch_ecg.utils.misc import ReprMixin, get_record_list_recursive3, list_sum, nildent
from torch_ecg.utils.utils_data import generate_weight_mask, mask_to_intervals
from torch_ecg.utils.utils_signal import remove_spikes_naive
if ModelCfg.torch_dtype == torch.float64:
torch.set_default_tensor_type(torch.DoubleTensor)
__all__ = [
"CPSC2021",
]
class CPSC2021(ReprMixin, Dataset):
"""
1. ECGs are preprocessed and stored in one folder
2. preprocessed ECGs are sliced with overlap to generate data and label for different tasks:
the data files stores segments of fixed length of preprocessed ECGs,
the annotation files contain "qrs_mask", and "af_mask"
"""
__DEBUG__ = False
__name__ = "CPSC2021"
def __init__(self, config: CFG, task: str, training: bool = True, lazy: bool = True) -> None:
"""
Parameters
----------
config: dict,
configurations for the Dataset,
ref. `cfg.TrainCfg`
training: bool, default True,
if True, the training set will be loaded, otherwise the test set
lazy: bool, default False,
if True, the data will not be loaded immediately
"""
super().__init__()
self.config = deepcopy(config)
assert self.config.db_dir is not None, "db_dir must be specified"
self.config.db_dir = Path(self.config.db_dir)
self.reader = CR(db_dir=self.config.db_dir)
if self.config.torch_dtype == torch.float64:
self.dtype = np.float64
else:
self.dtype = np.float32
self.allowed_preproc = list(
set(
[
"bandpass",
"baseline_remove",
]
).intersection(set(self.config.keys()))
)
self.training = training
self.lazy = lazy
ppm_config = CFG(random=False)
ppm_config.update(deepcopy(self.config))
ppm_config.pop("normalize")
seg_ppm_config = CFG(random=False)
seg_ppm_config.update(deepcopy(self.config))
seg_ppm_config.pop("bandpass")
self.ppm = PreprocManager.from_config(ppm_config)
self.seg_ppm = PreprocManager.from_config(seg_ppm_config)
# create directories if needed
# preprocess_dir stores pre-processed signals
self.preprocess_dir = self.config.db_dir / "preprocessed"
self.preprocess_dir.mkdir(parents=True, exist_ok=True)
# segments_dir for sliced segments of fixed length
self.segments_base_dir = self.config.db_dir / "segments"
self.segments_base_dir.mkdir(parents=True, exist_ok=True)
self.segment_name_pattern = "S_\\d{1,3}_\\d{1,2}_\\d{7}"
self.segment_ext = "mat"
# rr_dir for sequence of rr intervals of fix length
self.rr_seq_base_dir = self.config.db_dir / "rr_seq"
self.rr_seq_base_dir.mkdir(parents=True, exist_ok=True)
self.rr_seq_name_pattern = "R_\\d{1,3}_\\d{1,2}_\\d{7}"
self.rr_seq_ext = "mat"
self._all_data = None
self._all_labels = None
self._all_masks = None
self.__set_task(task, lazy=self.lazy)
def _load_all_data(self) -> None:
""" """
self.__set_task(self.task, lazy=False)
def __set_task(self, task: str, lazy: bool = True) -> None:
"""
Parameters
----------
task: str,
name of the task, can be one of `TrainCfg.tasks`
"""
assert task.lower() in TrainCfg.tasks, f"illegal task \042{task}\042"
if hasattr(self, "task") and self.task == task.lower() and self._all_data is not None and len(self._all_data) > 0:
return
self.task = task.lower()
self.all_classes = self.config[task].classes
self.n_classes = len(self.config[task].classes)
self.lazy = lazy
self.seglen = self.config[task].input_len # alias, for simplicity
split_res = self._train_test_split(
train_ratio=self.config.train_ratio,
force_recompute=False,
)
if self.training:
self.subjects = split_res.train
else:
self.subjects = split_res.test
if self.task in [
"qrs_detection",
"main",
]:
# for qrs detection, or for the main task
self.segments_dirs = CFG()
self.__all_segments = CFG()
self.segments_json = self.segments_base_dir / "segments.json"
self._ls_segments()
self.segments = list_sum([self.__all_segments[subject] for subject in self.subjects])
if self.__DEBUG__:
self.segments = DEFAULTS.RNG_sample(self.segments, int(len(self.segments) * 0.01)).tolist()
if self.training:
DEFAULTS.RNG.shuffle(self.segments)
# preload data
self.fdr = FastDataReader(
self.config,
self.task,
self.seg_ppm,
self.segments_dirs,
self.segments,
self.segment_ext,
)
if self.lazy:
return
self._all_data, self._all_labels, self._all_masks = [], [], []
with tqdm(
range(len(self.fdr)),
desc="Loading data",
unit="records",
dynamic_ncols=True,
mininterval=1.0,
) as pbar:
for idx in pbar:
d, l, m = self.fdr[idx]
self._all_data.append(d)
self._all_labels.append(l)
self._all_masks.append(m)
self._all_data = np.array(self._all_data).astype(self.dtype)
self._all_labels = np.array(self._all_labels).astype(self.dtype)
if self.task == "qrs_detection":
self._all_masks = None
else:
self._all_masks = np.array(self._all_masks).astype(self.dtype)
elif self.task in [
"rr_lstm",
]:
self.rr_seq_dirs = CFG()
self.__all_rr_seq = CFG()
self.rr_seq_json = self.rr_seq_base_dir / "rr_seq.json"
self._ls_rr_seq()
self.rr_seq = list_sum([self.__all_rr_seq[subject] for subject in self.subjects])
if self.__DEBUG__:
self.rr_seq = DEFAULTS.RNG_sample(self.rr_seq, int(len(self.rr_seq) * 0.01)).tolist()
if self.training:
DEFAULTS.RNG.shuffle(self.rr_seq)
# preload data
self.fdr = FastDataReader(
self.config,
self.task,
self.seg_ppm,
self.rr_seq_dirs,
self.rr_seq,
self.rr_seq_ext,
)
if self.lazy:
return
self._all_data, self._all_labels, self._all_masks = [], [], []
with tqdm(
range(len(self.fdr)),
desc="Loading data",
unit="records",
dynamic_ncols=True,
mininterval=1.0,
) as pbar:
for idx in pbar:
d, l, m = self.fdr[idx]
self._all_data.append(d)
self._all_labels.append(l)
self._all_masks.append(m)
self._all_data = np.array(self._all_data).astype(self.dtype)
self._all_labels = np.array(self._all_labels).astype(self.dtype)
self._all_masks = np.array(self._all_masks).astype(self.dtype)
else:
raise NotImplementedError(f"data generator for task \042{self.task}\042 not implemented")
def reset_task(self, task: str, lazy: bool = True) -> None:
""" """
self.__set_task(task, lazy)
def _ls_segments(self) -> None:
"""
list all the segments
"""
for item in ["data", "ann"]:
self.segments_dirs[item] = CFG()
for s in self.reader.all_subjects:
self.segments_dirs[item][s] = self.segments_base_dir / item / s
self.segments_dirs[item][s].mkdir(parents=True, exist_ok=True)
if self.segments_json.is_file():
self.__all_segments = json.loads(self.segments_json.read_text())
return
print(f"please allow the reader a few minutes to collect the segments from {self.segments_base_dir}...")
seg_filename_pattern = f"{self.segment_name_pattern}\\.{self.segment_ext}"
self.__all_segments = CFG(
{
s: get_record_list_recursive3(str(self.segments_dirs.data[s]), seg_filename_pattern)
for s in self.reader.all_subjects
}
)
if all([len(self.__all_segments[s]) > 0 for s in self.reader.all_subjects]):
self.segments_json.write_text(json.dumps(self.__all_segments, ensure_ascii=False))
def _ls_rr_seq(self) -> None:
"""
list all the rr sequences
"""
for s in self.reader.all_subjects:
self.rr_seq_dirs[s] = self.rr_seq_base_dir / s
self.rr_seq_dirs[s].mkdir(parents=True, exist_ok=True)
if self.rr_seq_json.is_file():
self.__all_rr_seq = json.loads(self.rr_seq_json.read_text())
return
print(f"please allow the reader a few minutes to collect the rr sequences from {self.rr_seq_base_dir}...")
rr_seq_filename_pattern = f"{self.rr_seq_name_pattern}\\.{self.rr_seq_ext}"
self.__all_rr_seq = CFG(
{s: get_record_list_recursive3(self.rr_seq_dirs[s], rr_seq_filename_pattern) for s in self.reader.all_subjects}
)
if all([len(self.__all_rr_seq[s]) > 0 for s in self.reader.all_subjects]):
self.rr_seq_json.write_text(json.dumps(self.__all_rr_seq, ensure_ascii=False))
@property
def all_segments(self) -> CFG:
if self.task in [
"qrs_detection",
"main",
]:
return self.__all_segments
else:
return CFG()
@property
def all_rr_seq(self) -> CFG:
if self.task.lower() in [
"rr_lstm",
]:
return self.__all_rr_seq
else:
return CFG()
def __len__(self) -> int:
return len(self.fdr)
def __getitem__(self, index: int) -> Tuple[np.ndarray, ...]:
if self.lazy:
if self.task in ["qrs_detection"]:
return self.fdr[index][:2]
else:
return self.fdr[index]
else:
if self.task in ["qrs_detection"]:
return self._all_data[index], self._all_labels[index]
else:
return (
self._all_data[index],
self._all_labels[index],
self._all_masks[index],
)
def _get_seg_data_path(self, seg: str) -> Path:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
Returns
-------
fp: Path,
path of the data file of the segment
"""
subject = seg.split("_")[1]
fp = self.segments_dirs.data[subject] / f"{seg}.{self.segment_ext}"
return fp
def _get_seg_ann_path(self, seg: str) -> Path:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
Returns
-------
fp: Path,
path of the annotation file of the segment
"""
subject = seg.split("_")[1]
fp = self.segments_dirs.ann[subject] / f"{seg}.{self.segment_ext}"
return fp
def _load_seg_data(self, seg: str) -> np.ndarray:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
Returns
-------
seg_data: ndarray,
data of the segment, of shape (2, `self.seglen`)
"""
seg_data_fp = self._get_seg_data_path(seg)
seg_data = loadmat(str(seg_data_fp))["ecg"]
return seg_data
def _load_seg_ann(self, seg: str) -> dict:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
Returns
-------
seg_ann: dict,
annotations of the segment, including
- rpeaks: indices of rpeaks of the segment
- qrs_mask: mask of qrs complexes of the segment
- af_mask: mask of af episodes of the segment
- interval: interval ([start_idx, end_idx]) in the original ECG record of the segment
"""
seg_ann_fp = self._get_seg_ann_path(seg)
seg_ann = {k: v.flatten() for k, v in loadmat(str(seg_ann_fp)).items() if not k.startswith("__")}
return seg_ann
def _load_seg_mask(self, seg: str, task: Optional[str] = None) -> Union[np.ndarray, Dict[str, np.ndarray]]:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
task: str, optional,
if specified, overrides self.task,
else if is "all", then all masks ("qrs_mask", "af_mask", etc.) will be returned
Returns
-------
seg_mask: np.ndarray or dict,
mask(s) of the segment,
of shape (self.seglen, self.n_classes)
"""
seg_mask = {
k: v.reshape((self.seglen, -1))
for k, v in self._load_seg_ann(seg).items()
if k
in [
"qrs_mask",
"af_mask",
]
}
_task = (task or self.task).lower()
if _task == "all":
return seg_mask
if _task in [
"qrs_detection",
]:
seg_mask = seg_mask["qrs_mask"]
elif _task in [
"main",
]:
seg_mask = seg_mask["af_mask"]
return seg_mask
def _load_seg_seq_lab(self, seg: str, reduction: int) -> np.ndarray:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
reduction: int,
reduction (granularity) of length of the model output,
compared to the original signal length
Returns
-------
seq_lab: np.ndarray,
label of the sequence,
of shape (self.seglen//reduction, self.n_classes)
"""
seg_mask = self._load_seg_mask(seg)
seg_len, n_classes = seg_mask.shape
seq_lab = np.stack(
arrays=[
np.mean(
seg_mask[reduction * idx : reduction * (idx + 1)],
axis=0,
keepdims=True,
).astype(int)
for idx in range(seg_len // reduction)
],
axis=0,
).squeeze(axis=1)
return seq_lab
def _get_rr_seq_path(self, seq_name: str) -> Path:
"""
Parameters
----------
seq_name: str,
name of the rr_seq, of pattern like "R_1_1_0000193"
Returns
-------
fp: Path,
path of the annotation file of the rr_seq
"""
subject = seq_name.split("_")[1]
fp = self.rr_seq_dirs[subject] / f"{seq_name}.{self.rr_seq_ext}"
return fp
def _load_rr_seq(self, seq_name: str) -> Dict[str, np.ndarray]:
"""
Parameters
----------
seq_name: str,
name of the rr_seq, of pattern like "R_1_1_0000193"
Returns
-------
rr_seq: dict,
metadata of sequence of rr intervals, including
- rr: the sequence of rr intervals, with units in seconds, of shape (self.seglen, 1)
- label: label of the rr intervals, 0 for normal, 1 for af, of shape (self.seglen, self.n_classes)
- interval: interval of the current rr sequence in the whole rr sequence in the original record
"""
rr_seq_path = self._get_rr_seq_path(seq_name)
rr_seq = {k: v for k, v in loadmat(str(rr_seq_path)).items() if not k.startswith("__")}
rr_seq["rr"] = rr_seq["rr"].reshape((self.seglen, 1))
rr_seq["label"] = rr_seq["label"].reshape((self.seglen, self.n_classes))
rr_seq["interval"] = rr_seq["interval"].flatten()
return rr_seq
def persistence(self, force_recompute: bool = False, verbose: int = 0) -> None:
"""
make the dataset persistent w.r.t. the ratios in `self.config`
Parameters
----------
force_recompute: bool, default False,
if True, recompute regardless of possible existing files
verbose: int, default 0,
print verbosity
"""
if verbose >= 1:
print(" preprocessing data ".center(110, "#"))
self._preprocess_data(
force_recompute=force_recompute,
verbose=verbose,
)
original_task = self.task
self.__set_task("main", lazy=True)
if verbose >= 1:
print("\n" + " slicing data into segments ".center(110, "#"))
self._slice_data(
force_recompute=force_recompute,
verbose=verbose,
)
self.__set_task("rr_lstm", lazy=True)
if verbose >= 1:
print("\n" + " generating rr sequences ".center(110, "#"))
self._slice_rr_seq(
force_recompute=force_recompute,
verbose=verbose,
)
self.__set_task(original_task, lazy=self.lazy)
def _preprocess_data(self, force_recompute: bool = False, verbose: int = 0) -> None:
"""
preprocesses the ecg data in advance for further use,
offline for `self.persistence`
Parameters
----------
force_recompute: bool, default False,
if True, recompute regardless of possible existing files
verbose: int, default 0,
print verbosity
"""
for idx, rec in enumerate(self.reader.all_records):
self._preprocess_one_record(
rec=rec,
force_recompute=force_recompute,
verbose=verbose,
)
if verbose >= 1:
print(f"{idx+1}/{len(self.reader.all_records)} records", end="\r")
def _preprocess_one_record(self, rec: str, force_recompute: bool = False, verbose: int = 0) -> None:
"""
preprocesses the ecg data in advance for further use,
offline for `self.persistence`
Parameters
----------
rec: str,
filename of the record
force_recompute: bool, default False,
if True, recompute regardless of possible existing files
verbose: int, default 0,
print verbosity
"""
suffix = self._get_rec_suffix(self.allowed_preproc)
save_fp = self.preprocess_dir / f"{rec}-{suffix}.{self.segment_ext}"
if (not force_recompute) and save_fp.is_file():
return
# perform pre-process
pps, _ = self.ppm(self.reader.load_data(rec), self.config.fs)
savemat(save_fp, {"ecg": pps}, format="5")
def load_preprocessed_data(self, rec: str) -> np.ndarray:
"""
Parameters
----------
rec: str,
filename of the record
Returns
-------
p_sig: ndarray,
the pre-computed processed ECG
"""
preproc = self.allowed_preproc
suffix = self._get_rec_suffix(preproc)
fp = self.preprocess_dir / f"{rec}-{suffix}.{self.segment_ext}"
if not fp.is_file():
raise FileNotFoundError(f"preprocess(es) \042{preproc}\042 not done for {rec} yet")
p_sig = loadmat(str(fp))["ecg"]
if p_sig.shape[0] != 2:
p_sig = p_sig.T
return p_sig
def _get_rec_suffix(self, operations: List[str]) -> str:
"""
Parameters
----------
operations: list of str,
names of operations to perform (or has performed),
should be sublist of `self.allowed_preproc`
Returns
-------
suffix: str,
suffix of the filename of the preprocessed ecg signal
"""
suffix = "-".join(sorted([item.lower() for item in operations]))
return suffix
def _slice_data(self, force_recompute: bool = False, verbose: int = 0) -> None:
"""
slice all records into segments of length `self.seglen`,
and perform data augmentations specified in `self.config`
Parameters
----------
force_recompute: bool, default False,
if True, recompute regardless of possible existing files
verbose: int, default 0,
print verbosity
"""
self.__assert_task(
[
"qrs_detection",
"main",
]
)
if force_recompute:
self._clear_cached_segments()
for idx, rec in enumerate(self.reader.all_records):
self._slice_one_record(
rec=rec,
force_recompute=False,
update_segments_json=False,
verbose=verbose,
)
if verbose >= 1:
print(f"{idx+1}/{len(self.reader.all_records)} records", end="\r")
if force_recompute:
with open(self.segments_json, "w") as f:
json.dump(self.__all_segments, f)
def _slice_one_record(
self,
rec: str,
force_recompute: bool = False,
update_segments_json: bool = False,
verbose: int = 0,
) -> None:
"""
slice one record into segments of length `self.seglen`,
and perform data augmentations specified in `self.config`
Parameters
----------
rec: str,
filename of the record
force_recompute: bool, default False,
if True, recompute regardless of possible existing files
update_segments_json: bool, default False,
if both `force_recompute` and `update_segments_json` are True,
the file `self.segments_json` will be updated,
useful when slicing not all records
verbose: int, default 0,
print verbosity
"""
self.__assert_task(
[
"qrs_detection",
"main",
]
)
subject = self.reader.get_subject_id(rec)
rec_segs = [item for item in self.__all_segments[subject] if item.startswith(rec.replace("data", "S"))]
if (not force_recompute) and len(rec_segs) > 0:
return
elif force_recompute:
self._clear_cached_segments([rec])
# data = self.reader.load_data(rec, units="mV")
data = self.load_preprocessed_data(rec)
siglen = data.shape[1]
rpeaks = self.reader.load_rpeaks(rec)
af_mask = self.reader.load_af_episodes(rec, fmt="mask")
forward_len = self.seglen - self.config[self.task].overlap_len
critical_forward_len = self.seglen - self.config[self.task].critical_overlap_len
critical_forward_len = [critical_forward_len // 4, critical_forward_len]
# skip those records that are too short
if siglen < self.seglen:
return
# find critical points
critical_points = np.where(np.diff(af_mask) != 0)[0]
critical_points = [p for p in critical_points if critical_forward_len[1] <= p < siglen - critical_forward_len[1]]
segments = []
# ordinary segments with constant forward_len
for idx in range((siglen - self.seglen) // forward_len + 1):
start_idx = idx * forward_len
new_seg = self.__generate_segment(
rec=rec,
data=data,
start_idx=start_idx,
)
segments.append(new_seg)
# the tail segment
new_seg = self.__generate_segment(
rec=rec,
data=data,
end_idx=siglen,
)
segments.append(new_seg)
# special segments around critical_points with random forward_len in critical_forward_len
for cp in critical_points:
start_idx = max(
0,
cp - self.seglen + DEFAULTS.RNG_randint(critical_forward_len[0], critical_forward_len[1]),
)
while start_idx <= min(cp - critical_forward_len[1], siglen - self.seglen):
new_seg = self.__generate_segment(
rec=rec,
data=data,
start_idx=start_idx,
)
segments.append(new_seg)
start_idx += DEFAULTS.RNG_randint(critical_forward_len[0], critical_forward_len[1])
# return segments
self.__save_segments(rec, segments, update_segments_json)
def __generate_segment(
self,
rec: str,
data: np.ndarray,
start_idx: Optional[int] = None,
end_idx: Optional[int] = None,
) -> CFG:
"""
generate segment, with possible data augmentation
Parameter
---------
rec: str,
filename of the record
data: ndarray,
the whole of (preprocessed) ECG record
start_idx: int, optional,
start index of the signal of `rec` for generating the segment
end_idx: int, optional,
end index of the signal of `rec` for generating the segment,
if `start_idx` is set, `end_idx` is ignored,
at least one of `start_idx` and `end_idx` should be set
Returns
-------
new_seg: dict,
segments (meta-)data, containing:
- data: values of the segment, with units in mV
- rpeaks: indices of rpeaks of the segment
- qrs_mask: mask of qrs complexes of the segment
- af_mask: mask of af episodes of the segment
- interval: interval ([start_idx, end_idx]) in the original ECG record of the segment
"""
assert not all([start_idx is None, end_idx is None]), "at least one of `start_idx` and `end_idx` should be set"
siglen = data.shape[1]
# offline augmentations are done, including strech-or-compress, ...
if self.config.stretch_compress != 0:
sign = DEFAULTS.RNG_sample(self.config.stretch_compress_choices, 1)[0]
if sign != 0:
sc_ratio = self.config.stretch_compress
sc_ratio = 1 + (DEFAULTS.RNG.uniform(sc_ratio / 4, sc_ratio) * sign) / 100
sc_len = int(round(sc_ratio * self.seglen))
if start_idx is not None:
end_idx = start_idx + sc_len
else:
start_idx = end_idx - sc_len
if end_idx > siglen:
end_idx = siglen
start_idx = max(0, end_idx - sc_len)
sc_ratio = (end_idx - start_idx) / self.seglen
aug_seg = data[..., start_idx:end_idx]
aug_seg = SS.resample(x=aug_seg, num=self.seglen, axis=1)
else:
if start_idx is not None:
end_idx = start_idx + self.seglen
if end_idx > siglen:
end_idx = siglen
start_idx = end_idx - self.seglen
else:
start_idx = end_idx - self.seglen
if start_idx < 0:
start_idx = 0
end_idx = self.seglen
# the segment of original signal, with no augmentation
aug_seg = data[..., start_idx:end_idx]
sc_ratio = 1
else:
if start_idx is not None:
end_idx = start_idx + self.seglen
if end_idx > siglen:
end_idx = siglen
start_idx = end_idx - self.seglen
else:
start_idx = end_idx - self.seglen
if start_idx < 0:
start_idx = 0
end_idx = self.seglen
aug_seg = data[..., start_idx:end_idx]
sc_ratio = 1
# adjust rpeaks
seg_rpeaks = self.reader.load_rpeaks(
rec=rec,
sampfrom=start_idx,
sampto=end_idx,
keep_original=False,
)
seg_rpeaks = [
int(round(r / sc_ratio))
for r in seg_rpeaks
if self.config.rpeaks_dist2border <= r < self.seglen - self.config.rpeaks_dist2border
]
# generate qrs_mask from rpeaks
seg_qrs_mask = np.zeros((self.seglen,), dtype=int)
for r in seg_rpeaks:
seg_qrs_mask[r - self.config.qrs_mask_bias : r + self.config.qrs_mask_bias] = 1
# adjust af_intervals
seg_af_intervals = self.reader.load_af_episodes(
rec=rec,
sampfrom=start_idx,
sampto=end_idx,
keep_original=False,
fmt="intervals",
)
seg_af_intervals = [[int(round(itv[0] / sc_ratio)), int(round(itv[1] / sc_ratio))] for itv in seg_af_intervals]
# generate af_mask from af_intervals
seg_af_mask = np.zeros((self.seglen,), dtype=int)
for itv in seg_af_intervals:
seg_af_mask[itv[0] : itv[1]] = 1
new_seg = CFG(
data=aug_seg,
rpeaks=seg_rpeaks,
qrs_mask=seg_qrs_mask,
af_mask=seg_af_mask,
interval=[start_idx, end_idx],
)
return new_seg
def __save_segments(self, rec: str, segments: List[CFG], update_segments_json: bool = False) -> None:
"""
Parameters
----------
rec: str,
filename of the record
segments: list of dict,
list of the segments (meta-)data
update_segments_json: bool, default False,
if True, the file `self.segments_json` will be updated
"""
subject = self.reader.get_subject_id(rec)
ordering = list(range(len(segments)))
DEFAULTS.RNG.shuffle(ordering)
for i, idx in enumerate(ordering):
seg = segments[idx]
filename = f"{rec}_{i:07d}.{self.segment_ext}".replace("data", "S")
data_path = self.segments_dirs.data[subject] / filename
savemat(str(data_path), {"ecg": seg.data})
self.__all_segments[subject].append(Path(filename).with_suffix(""))
ann_path = self.segments_dirs.ann[subject] / filename
savemat(
str(ann_path),
{
k: v
for k, v in seg.items()
if k
not in [
"data",
]
},
)
if update_segments_json:
self.segments_json.write_text(json.dumps(self.__all_segments, ensure_ascii=False))
def _clear_cached_segments(self, recs: Optional[Sequence[str]] = None) -> None:
"""
Parameters
----------
recs: sequence of str, optional
sequence of the records whose segments are to be cleared,
defaults to all records
"""
self.__assert_task(
[
"qrs_detection",
"main",
]
)
if recs is not None:
for rec in recs:
subject = self.reader.get_subject_id(rec)
for item in [
"data",
"ann",
]:
path = str(self.segments_dirs[item][subject])
for f in [n for n in os.listdir(path) if n.endswith(self.segment_ext)]:
if self._get_rec_name(f) == rec:
os.remove(os.path.join(path, f))
self.__all_segments[subject].remove(os.path.splitext(f)[0])
else:
for subject in self.reader.all_subjects:
for item in [
"data",
"ann",
]:
path = str(self.segments_dirs[item][subject])
for f in [n for n in os.listdir(path) if n.endswith(self.segment_ext)]:
os.remove(os.path.join(path, f))
self.__all_segments[subject].remove(os.path.splitext(f)[0])
self.segments = list_sum([self.__all_segments[subject] for subject in self.subjects])
def _slice_rr_seq(self, force_recompute: bool = False, verbose: int = 0) -> None:
"""
slice sequences of rr intervals into fixed length (sub)sequences
Parameters
----------
force_recompute: bool, default False,
if True, recompute regardless of possible existing files
verbose: int, default 0,
print verbosity
"""
self.__assert_task(["rr_lstm"])
if force_recompute:
self._clear_cached_rr_seq()
for idx, rec in enumerate(self.reader.all_records):
self._slice_rr_seq_one_record(
rec=rec,
force_recompute=False,
update_rr_seq_json=False,
verbose=verbose,
)