-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathevaluate.py
206 lines (157 loc) · 8.77 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import json
import torch
import numpy as np
from tqdm import tqdm
import argparse
from model.loss import EPE_3D_eval
from model import dataset
import utils.utils as utils
import utils.viz_utils as viz_utils
import utils.nnutils as nnutils
import utils.line_mesh as line_mesh_utils
import options as opt
def main():
#####################################################################################################
# Options
#####################################################################################################
# Parse command line arguments.
parser = argparse.ArgumentParser()
parser.add_argument('--split', help='Data split', choices=['val', 'test'], required=True)
args = parser.parse_args()
split = args.split
dataset_base_dir = opt.dataset_base_dir
experiments_dir = opt.experiments_dir
model_name = opt.model_name
gn_max_depth = opt.gn_max_depth
# Image dimensiones to which we crop the input images, such that they are divisible by 64
image_height = opt.image_height
image_width = opt.image_width
#####################################################################################################
# Read labels and assert existance of output dir
#####################################################################################################
labels_json = os.path.join(dataset_base_dir, f"{split}_graphs.json")
assert os.path.isfile(labels_json), f"{labels_json} does not exist! Make sure you specified the correct 'dataset_base_dir' in options.py."
with open(labels_json, 'r') as f:
labels = json.loads(f.read())
# Output dir
model_base_dir = os.path.join(experiments_dir, "models", model_name)
predictions_dir = f"{model_base_dir}/evaluation/{split}"
if not os.path.isdir(predictions_dir):
raise Exception(f"Predictions directory {predictions_dir} does not exist. Please generate predictions with 'run_generate.sh' first.")
#####################################################################################################
# Go over dataset
#####################################################################################################
# Graph error (EPE on graph nodes)
graph_error_3d_sum = 0.0
total_num_nodes = 0
# Dense EPE 3D
epe3d_sum = 0.0
total_num_points = 0
for label in tqdm(labels):
assert "graph_node_deformations" in label, "It's highly probable that you're running this script with 'split' set to 'test'. " \
"but the public dataset does not provide gt for the test set. Plase choose 'val' if " \
"you want to compute metrics."
##############################################################################################
# Load gt
##############################################################################################
src_color_image_path = os.path.join(dataset_base_dir, label["source_color"])
src_depth_image_path = os.path.join(dataset_base_dir, label["source_depth"])
graph_nodes_path = os.path.join(dataset_base_dir, label["graph_nodes"])
graph_edges_path = os.path.join(dataset_base_dir, label["graph_edges"])
graph_edges_weights_path = os.path.join(dataset_base_dir, label["graph_edges_weights"])
graph_node_deformations_path = os.path.join(dataset_base_dir, label["graph_node_deformations"])
graph_clusters_path = os.path.join(dataset_base_dir, label["graph_clusters"])
pixel_anchors_path = os.path.join(dataset_base_dir, label["pixel_anchors"])
pixel_weights_path = os.path.join(dataset_base_dir, label["pixel_weights"])
optical_flow_image_path = os.path.join(dataset_base_dir, label["optical_flow"])
scene_flow_image_path = os.path.join(dataset_base_dir, label["scene_flow"])
intrinsics = label["intrinsics"]
# Source color and depth
source, _, cropper = dataset.DeformDataset.load_image(
src_color_image_path, src_depth_image_path, intrinsics, image_height, image_width
)
source_points = source[3:, :, :]
# Graph
graph_nodes, graph_edges, graph_edges_weights, graph_node_deformations, graph_clusters, pixel_anchors, pixel_weights = dataset.DeformDataset.load_graph_data(
graph_nodes_path, graph_edges_path, graph_edges_weights_path, graph_node_deformations_path,
graph_clusters_path, pixel_anchors_path, pixel_weights_path, cropper
)
optical_flow_gt, optical_flow_mask, scene_flow_gt, scene_flow_mask = dataset.DeformDataset.load_flow(
optical_flow_image_path, scene_flow_image_path, cropper
)
# mask is duplicated across feature dimension, so we can safely take the first channel
scene_flow_mask = scene_flow_mask[0].astype(np.bool)
optical_flow_mask = optical_flow_mask[0].astype(np.bool)
# All points that have valid optical flow should also have valid scene flow
assert np.array_equal(scene_flow_mask, optical_flow_mask)
num_source_points = np.sum(scene_flow_mask)
# if num_source_points > 100000:
# print(label["source_color"], num_source_points)
##############################################################################################
# Load predictions
##############################################################################################
seq_id = label["seq_id"]
object_id = label["object_id"]
source_id = label["source_id"]
target_id = label["target_id"]
sample_name = f"{seq_id}_{object_id}_{source_id}_{target_id}"
node_translations_pred_file = os.path.join(predictions_dir, f"{sample_name}_node_translations.bin")
scene_flow_pred_file = os.path.join(predictions_dir, f"{sample_name}_sceneflow.sflow")
assert os.path.isfile(node_translations_pred_file), f"{node_translations_pred_file} does not exist. Make sure you are not missing any prediction."
assert os.path.isfile(scene_flow_pred_file), f"{scene_flow_pred_file} does not exist. Make sure you are not missing any prediction."
node_translations_pred = utils.load_graph_node_deformations(
node_translations_pred_file
)
scene_flow_pred = utils.load_flow(
scene_flow_pred_file
)
##############################################################################################
# Compute metrics
##############################################################################################
######################
# Node translations (graph_node_deformations are the groundtruth graph nodes translations)
######################
graph_error_3d_dict = EPE_3D_eval(
graph_node_deformations, node_translations_pred
)
graph_error_3d_sum += graph_error_3d_dict["sum"]
total_num_nodes += graph_error_3d_dict["num"]
######################
# Scene flow
######################
# First, get valid source points
source_anchor_validity = np.all(pixel_anchors >= 0.0, axis=2)
valid_source_points = np.logical_and.reduce([
source_points[2, :, :] > 0.0,
source_points[2, :, :] <= gn_max_depth,
source_anchor_validity,
scene_flow_mask,
optical_flow_mask
])
scene_flow_gt = np.moveaxis(scene_flow_gt, 0, -1)
scene_flow_pred = np.moveaxis(scene_flow_pred, 0, -1)
deformed_points_gt = scene_flow_gt[valid_source_points]
deformed_points_pred = scene_flow_pred[valid_source_points]
epe_3d_dict = EPE_3D_eval(
deformed_points_gt, deformed_points_pred
)
epe3d_sum += epe_3d_dict["sum"]
total_num_points += epe_3d_dict["num"]
# Compute average errors
graph_error_3d_avg = graph_error_3d_sum / total_num_nodes
epe3d_avg = epe3d_sum / total_num_points
print(f"Graph Error 3D (mm): {graph_error_3d_avg * 1000.0}")
print(f"EPE 3D (mm): {epe3d_avg * 1000.0}")
# Write to file
with open(f"{model_base_dir}/{model_name}__ON__{args.split}.txt", "w") as f:
f.write("\n")
f.write("Evaluation results:\n\n")
f.write("\n")
f.write("Model: {0}\n".format(model_name))
f.write("Split: {0}\n".format(args.split))
f.write("\n")
f.write("{:<40} {}\n".format("Graph Error 3D (mm)", graph_error_3d_avg * 1000.0))
f.write("{:<40} {}\n".format("EPE 3D (mm)", epe3d_avg * 1000.0))
if __name__ == "__main__":
main()