-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
39 lines (33 loc) · 1.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import argparse, os, shutil
import tensorflow as tf
from tensorflow.python.util import deprecation
from CartoonGan import CartoonGAN
from utils import *
deprecation._PRINT_DEPRECATION_WARNINGS = False
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# argument parser
def parse_args():
desc = "Keras implementation of CartoonGAN"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--batch_size', type=int, default=32, help='batch size for the training')
parser.add_argument('--epochs', type=int, default=500, help='epoch size for the training')
parser.add_argument('--gpu_num', type=int, default=4, help='gpu numbers available for parallel training')
parser.add_argument('--image_channels', type=int, default=3, help='image channels')
parser.add_argument('--image_size', type=int, default=256, help='image size for the model input')
parser.add_argument('--init_epoch', type=int, default=30, help='epoch size for the initial training of generator')
parser.add_argument('--log_dir', type=str, default='logs', help='logs directory')
parser.add_argument('--lr', type=float, default=0.0002, help='learning rate for the Adam optimizer')
parser.add_argument('--model_dir', type=str, default='pretrained_model', help='pretrained model directory')
parser.add_argument('--weight', type=int, default=10, help='the weight for the vgg loss in loss function')
return parser.parse_args()
# main function
def main():
args = parse_args()
os.mkdir(args.model_dir)
# create cartoongan object
cartoongan = CartoonGAN(args)
# train model
cartoongan.compile_model()
cartoongan.train()
if __name__ == '__main__':
main()