-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
53 lines (44 loc) · 1.5 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def correct_preds(probs, labels, tol=-1):
"""
Gets correct events in full-length sequence using tolerance based on number of frames from address to impact.
Used during validation only.
:param probs: (sequence_length, 9)
:param labels: (sequence_length,)
:return: array indicating correct events in predicted sequence (8,)
"""
events = np.where(labels < 8)[0]
preds = np.zeros(len(events))
if tol == -1:
tol = int(max(np.round((events[5] - events[0])/30), 1))
for i in range(len(events)):
preds[i] = np.argsort(probs[:, i])[-1]
deltas = np.abs(events-preds)
correct = (deltas <= tol).astype(np.uint8)
return events, preds, deltas, tol, correct
def freeze_layers(num_freeze, net):
# print("Freezing {:2d} layers".format(num_freeze))
i = 1
for child in net.children():
if i ==1:
j = 1
for child_child in child.children():
if j <= num_freeze:
for param in child_child.parameters():
param.requires_grad = False
j += 1
i += 1