-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrbto_den.m
228 lines (198 loc) · 6.74 KB
/
rbto_den.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
%%% rbto_den(60,20,3,1.5,dismax)
function rbto_den(nelx,nely,penal,rmin,dismax)
%%% Initial values
nKL = 2;
init_val = 0.5;
x(1:nely,1:nelx) = init_val;
xphy(1:nely,1:nelx) = init_val;
nu = 0.3;
k = [ 1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...
-1/4+nu/12 -1/8-nu/8 nu/6 1/8-3*nu/8];
KE = 1/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)
k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)
k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)
k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)
k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)
k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)
k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)
k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];
%%% MMA
m = 1;
n = nelx*nely;
xmin(1:n,1) = 0.001;
xmax(1:n,1) = 1;
low = xmin;
upp = xmax;
a0 = 1;
a(1:m,1) = 0;
ci(1:m,1) = 1000;
d(1:m,1) = 0;
xold1 = x;
xold2 = x;
[eigV,eigF] = KL(nelx,nely,nKL);
dof = 2;
upE = 1;
lwE = 1.5;
roots = [sqrt(3 + sqrt(6))...
-sqrt(3 + sqrt(6))...
sqrt(3 - sqrt(6))...
-sqrt(3 - sqrt(6))];
colPoints = [ 0 0;...
roots(1) 0;...
0 roots(1);...
roots(2) 0;...
0 roots(2);...
roots(3) 0;...
0 roots(3);...
roots(4) 0;...
0 roots(4);...
roots(3) roots(3);...
roots(4) roots(4);...
roots(3) roots(4);...
roots(4) roots(3);...
roots(1) roots(3);...
roots(1) roots(4);...
roots(3) roots(1);...
roots(4) roots(1);...
roots(2) roots(3);...
roots(3) roots(2);...
roots(2) roots(4);...
roots(4) roots(2);...
roots(1) roots(2);...
roots(2) roots(1)];
%%% Prepare filter
iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for i1 = 1:nelx
for j1 = 1:nely
e1 = (i1-1)*nely+j1;
for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
e2 = (i2-1)*nely+j2;
k = k+1;
iH(k) = e1;
jH(k) = e2;
sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2));
end
end
end
end
H = sparse(iH,jH,sH);
Hs = sum(H,2);
mpp = [0 0];
mpptol = 1.;
fval(1,1) = 1;
main_loop = 0;
while mpptol > 0.001
mppold = mpp;
main_loop = main_loop + 1;
loop = 0;
change = 1.;
x(1:nely,1:nelx) = init_val;
xphy = x;
E = update_E(eigV, eigF, mpp, nKL, upE, lwE, nelx, nely);
while change > 0.001
loop = loop + 1;
[U] = FE(nelx,nely,xphy,penal,KE,E,dof);
dcf(1:nely,1:nelx) = 0;
for ely = 1:nely
for elx = 1:nelx
n1 = (nely+1)*(elx-1)+ely;
n2 = (nely+1)* elx +ely;
Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
dcf(ely,elx) = -Ue'*penal*xphy(ely,elx)^(penal-1)*E(ely,elx)*KE*Ue;
end
end
c = sum(xphy(:));
dc(1:nely,1:nelx) = 1;
dc(:) = H*(dc(:)./Hs);
f0val = c;
df0dx = dc(:);
fval(1,1) = U(dof)/dismax -1;
dcf(:) = H*(dcf(:)./Hs);
dfdx(1,1:n) = dcf(:)/dismax;
%%% The MMA subproblem is solved at the point xval:
outeriter = loop;
[xmma,~,~,~,~,~,~,~,~,low,upp] = ...
mmasub(m,n,outeriter,x(:),xmin,xmax,xold1(:),xold2(:), ...
f0val,df0dx,fval,dfdx,low,upp,a0,a,ci,d);
%%% Update
xold2 = xold1;
xold1 = x;
xnew = reshape(xmma,nely,nelx);
xphy(:) = (H*xnew(:))./Hs;
change = max(abs(xnew(:)-x(:)));
x = xnew;
% Results
disp([' It.: ' sprintf('%4i',loop) ' Obj.: ' sprintf('%10.4f',c) ...
' Vol Frac.: ' sprintf('%6.4f',sum(sum(xphy))/(nelx*nely)) ...
' ch.: ' sprintf('%6.3f',change )])
% PLOT DENSITIES
colormap(gray);
imagesc(1-xphy);
axis equal;
axis tight;
axis off;
pause(1e-6);
end
mpp = find_mpp(colPoints, eigV, eigF, nKL, nelx, nely, xphy, penal,...
KE, dof, upE, lwE, dismax);
mpptol = max(abs(mpp(:)-mppold(:)));
end
%%%
main_loop
disp('END OPTIMIZATION');
rbto_mc(nelx, nely, penal, xphy, dismax, dof, upE, lwE);
end
function newE = update_E(eigV, eigF, mpp, nKL, c, d, nelx, nely)
Z = sqrt(eigV).* mpp';
E(1:nely,1:nelx) = 0;
for j = 1:nKL
E = E + Z(j)*squeeze(eigF(j,:,:));
end
newE = c + (d-c)*normcdf(E);
end
function mpp = find_mpp(colPoints, eigV, eigF, nKL, nelx, nely, x, penal,...
KE, dof, c, d, dismax)
s = length(colPoints);
v(1:s) = 0;
for i = 1:s
Z = sqrt(eigV).*colPoints(i,:)';
E(1:nely,1:nelx) = 0;
for j = 1:nKL
E = E + Z(j)*squeeze(eigF(j,:,:));
end
E = c + (d-c)*normcdf(E);
[U] = FE(nelx,nely,x,penal,KE,E,dof);
v(i) = U(dof);
end
numVar = 10;
N(1:s,1:numVar) = 0;
for i = 1:s
N(i,1) = 1;
N(i,2) = colPoints(i, 1);
N(i,3) = colPoints(i, 2);
N(i,4) = colPoints(i, 1)^2 - 1;
N(i,5) = colPoints(i,2)^2 - 1;
N(i,6) = colPoints(i,1)*colPoints(i,2);
N(i,7) = colPoints(i,1)^3 - 3*colPoints(i,1);
N(i,8) = colPoints(i,2)^3 - 3*colPoints(i,2);
N(i,9) = colPoints(i,1)*colPoints(i,2)^2 - colPoints(i,1);
N(i,10) = colPoints(i,2)*colPoints(i,1)^2 - colPoints(i,2);
end
a = N'*N \ N'*v';
h = @(x) a(1) + a(2)*x(:,1) + a(3)*x(:,2) +...
a(4)*(x(:,1)^2 - 1) + a(5)*(x(:,2)^2 - 1) +...
a(6)*x(:,1)*x(:,2) +...
a(7)*(x(:,1)^3 - 3*x(:,1)) + a(8)*(x(:,2)^3 - 3*x(:,2)) +...
a(9)*(x(:,1)*(x(:,2)^2) - x(:,1)) + a(10)*((x(:,1)^2)*x(:,2) - x(:,2));
%g = @(x) h(x)/dismax - 1;
g = @(x) dismax/h(x) - 1;
%T = @(x) x;
Tinv = @(u) u;
res = CODES.reliability.iform(g,2,2.5,'solver','hmv','Tinv',Tinv);
disp(res)
mpp = res.MPTP;
end