-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig-defaults.yaml
executable file
·154 lines (144 loc) · 2.95 KB
/
config-defaults.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Basic HP
tag:
desc: wandb tags
value:
- Relabelled
model_type:
desc: which model to use (CNN/TCN/MLP/RNN)
value: MLP
epochs:
desc: Number of epochs to train over
value: 500
batch_size:
desc: Size of each mini-batch
value: 16384
momentum:
desc: momentum for SGD
value: 0.9
optim:
desc: optimizer to use
value: SGD
n_features:
desc: number of features to include (max 40)
value: 40
# Learning rate
learning_rate:
desc: initial learning rate
value: 0.4
lr_scheduler:
desc: if scheduler is on
value: True
reduce_on_plateau:
desc: if reduce on plateu true
value: True
lr_finder:
desc: is lr finder should run
value: False
log_lr:
desc: log lr finder to wandb
value: False
min_lr:
desc: minimum lr for CLR
value: 0.00001
max_lr:
desc: cyclic lr max value
value: 1
lr_metric:
desc: Loss or TSS (loss is better, or is it??)
value: TSS
lr_rangetest_iter:
desc: number of iterations for range test (200 seems best)
value: 200
# TCN HP
levels:
desc: num of tcn blocks
value: 1
ksize:
desc: kernel size (smallest is 2)
value: 7
nhid:
desc: number of filters
value: 40
seq_len:
desc: size of sequence (Be 1 for MLP)
value: 1
# MLP
layers:
desc: MLP layers
value: 1
hidden_units:
desc: number hidden nodes in layer
value: 100
# Regularizer
dropout:
desc: dropout applied to layers
value: 0.7
weight_decay:
desc: L2 regularizing
value: 0.0
# Cross Validation
liu_fold:
desc: If liu fold should be done
value: False
cross_validation:
desc: if crossval should be performed
value: False
nested_cv:
desc: if nested crossval should be performed
value: False
n_splits:
desc: number of splits
value: 3
# Environment
skorch:
desc: if skorch should be used to train (Faster, fewer metrics)
value: False
checkpoint:
desc: should use network on best checkpoint?
value: True
flare_label:
desc: Types of flare class
value: M5
seed:
desc: random seed
value: 1
clip:
desc: gradient clipping value (not skorch)
value: -1
cuda:
desc: enables cuda training
value: True
early_stop:
desc: stops training if overfitting, Don't use with lr scheduler
value: True
patience:
desc: amount of epochs for early stopping
value: 40
training:
desc: Trains models, else only tests
value: False
model_name:
desc: The model used for evaluation (if training disabled, 1_100_65536_9e-2) dewald123/liu_pytorch_MLP/wq7vfdcf
value: dewald123/liu_pytorch_MLP/yl0307vc
num_workers:
desc: number of gpu workers
value: 9
parse_args:
desc: if args should be parse for bash script
value: False
# Dataset
dataset:
desc: which dataset to use \
(z_minmax_all/z_minmax_train/z_train/z_p_transformed/Krynauw/ Synth/ \
Sampled/ M5_only)
value: Liu/z_train_relabelled/
shuffle:
desc: if data should be shuffled or not
value: False
# Interpretation
interpret:
desc: activate captum/SHAP attribution methods
value: True
evaluation:
desc: Do final evaluation, pr roc threholds
value: False