forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare.sh
executable file
·508 lines (445 loc) · 17.1 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
#!/usr/bin/env bash
set -eou pipefail
nj=16
stage=-1
stop_stage=100
# Split data/${lang}set to this number of pieces
# This is to avoid OOM during feature extraction.
num_splits=1000
# In case you want to use all validated data
use_validated=false
# In case you are willing to take the risk and use invalidated data
use_invalidated=false
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/$release/$lang
# This directory contains the following files downloaded from
# https://mozilla-common-voice-datasets.s3.dualstack.us-west-2.amazonaws.com/${release}/${release}-${lang}.tar.gz
#
# - clips
# - dev.tsv
# - invalidated.tsv
# - other.tsv
# - reported.tsv
# - test.tsv
# - train.tsv
# - validated.tsv
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
release=cv-corpus-12.0-2022-12-07
lang=fr
perturb_speed=false
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/${lang}/lang_bpe_xxx,
# data/${lang}/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
# All files generated by this script are saved in "data/${lang}".
# You can safely remove "data/${lang}" and rerun this script to regenerate it.
mkdir -p data/${lang}
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if ! command -v ffmpeg &> /dev/null; then
echo "This dataset requires ffmpeg"
echo "Please install ffmpeg first"
echo ""
echo " sudo apt-get install ffmpeg"
exit 1
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/$release,
# you can create a symlink
#
# ln -sfv /path/to/$release $dl_dir/$release
#
if [ ! -d $dl_dir/$release/$lang/clips ]; then
lhotse download commonvoice --languages $lang --release $release $dl_dir
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare CommonVoice manifest"
# We assume that you have downloaded the CommonVoice corpus
# to $dl_dir/$release
mkdir -p data/${lang}/manifests
if [ ! -e data/${lang}/manifests/.cv-${lang}.done ]; then
lhotse prepare commonvoice --language $lang -j $nj $dl_dir/$release data/${lang}/manifests
if [ $use_validated = true ] && [ ! -f data/${lang}/manifests/.cv-${lang}.validated.done ]; then
log "Also prepare validated data"
lhotse prepare commonvoice \
--split validated \
--language $lang \
-j $nj $dl_dir/$release data/${lang}/manifests
touch data/${lang}/manifests/.cv-${lang}.validated.done
fi
if [ $use_invalidated = true ] && [ ! -f data/${lang}/manifests/.cv-${lang}.invalidated.done ]; then
log "Also prepare invalidated data"
lhotse prepare commonvoice \
--split invalidated \
--language $lang \
-j $nj $dl_dir/$release data/${lang}/manifests
touch data/${lang}/manifests/.cv-${lang}.invalidated.done
fi
touch data/${lang}/manifests/.cv-${lang}.done
fi
# Note: in Linux, you can install jq with the following command:
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
# 2. chmod +x ./jq
# 3. cp jq /usr/bin
if [ $use_validated = true ]; then
log "Getting cut ids from dev/test sets for later use"
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_test.jsonl.gz \
| jq '.id' | sed 's/"//g' > data/${lang}/manifests/cv-${lang}_test_ids
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_dev.jsonl.gz \
| jq '.id' | sed 's/"//g' > data/${lang}/manifests/cv-${lang}_dev_ids
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Preprocess CommonVoice manifest"
if [ ! -e data/${lang}/fbank/.preprocess_complete ]; then
./local/preprocess_commonvoice.py --language $lang
touch data/${lang}/fbank/.preprocess_complete
fi
if [ $use_validated = true ] && [ ! -f data/${lang}/fbank/.validated.preprocess_complete ]; then
log "Also preprocess validated data"
./local/preprocess_commonvoice.py --language $lang --dataset validated
touch data/${lang}/fbank/.validated.preprocess_complete
fi
if [ $use_invalidated = true ] && [ ! -f data/${lang}/fbank/.invalidated.preprocess_complete ]; then
log "Also preprocess invalidated data"
./local/preprocess_commonvoice.py --language $lang --dataset invalidated
touch data/${lang}/fbank/.invalidated.preprocess_complete
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for dev and test subsets of CommonVoice"
mkdir -p data/${lang}/fbank
if [ ! -e data/${lang}/fbank/.cv-${lang}_dev_test.done ]; then
./local/compute_fbank_commonvoice_dev_test.py --language $lang
touch data/${lang}/fbank/.cv-${lang}_dev_test.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Split train subset into ${num_splits} pieces"
split_dir=data/${lang}/fbank/cv-${lang}_train_split_${num_splits}
if [ ! -e $split_dir/.cv-${lang}_train_split.done ]; then
lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_train_raw.jsonl.gz $split_dir
touch $split_dir/.cv-${lang}_train_split.done
fi
split_dir=data/${lang}/fbank/cv-${lang}_validated_split_${num_splits}
if [ $use_validated = true ] && [ ! -f $split_dir/.cv-${lang}_validated.done ]; then
log "Also split validated data"
lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_validated_raw.jsonl.gz $split_dir
touch $split_dir/.cv-${lang}_validated.done
fi
split_dir=data/${lang}/fbank/cv-${lang}_invalidated_split_${num_splits}
if [ $use_invalidated = true ] && [ ! -f $split_dir/.cv-${lang}_invalidated.done ]; then
log "Also split invalidated data"
lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_invalidated_raw.jsonl.gz $split_dir
touch $split_dir/.cv-${lang}_invalidated.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Compute features for train subset of CommonVoice"
if [ ! -e data/${lang}/fbank/.cv-${lang}_train.done ]; then
./local/compute_fbank_commonvoice_splits.py \
--num-workers $nj \
--batch-duration 200 \
--start 0 \
--num-splits $num_splits \
--language $lang \
--perturb-speed $perturb_speed
touch data/${lang}/fbank/.cv-${lang}_train.done
fi
if [ $use_validated = true ] && [ ! -f data/${lang}/fbank/.cv-${lang}_validated.done ]; then
log "Also compute features for validated data"
./local/compute_fbank_commonvoice_splits.py \
--subset validated \
--num-workers $nj \
--batch-duration 200 \
--start 0 \
--num-splits $num_splits \
--language $lang \
--perturb-speed $perturb_speed
touch data/${lang}/fbank/.cv-${lang}_validated.done
fi
if [ $use_invalidated = true ] && [ ! -f data/${lang}/fbank/.cv-${lang}_invalidated.done ]; then
log "Also compute features for invalidated data"
./local/compute_fbank_commonvoice_splits.py \
--subset invalidated \
--num-workers $nj \
--batch-duration 200 \
--start 0 \
--num-splits $num_splits \
--language $lang \
--perturb-speed $perturb_speed
touch data/${lang}/fbank/.cv-${lang}_invalidated.done
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Combine features for train"
if [ ! -f data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz ]; then
pieces=$(find data/${lang}/fbank/cv-${lang}_train_split_${num_splits} -name "cv-${lang}_cuts_train.*.jsonl.gz")
lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz
fi
if [ $use_validated = true ] && [ -f data/${lang}/fbank/.cv-${lang}_validated.done ]; then
log "Also combine features for validated data"
pieces=$(find data/${lang}/fbank/cv-${lang}_validated_split_${num_splits} -name "cv-${lang}_cuts_validated.*.jsonl.gz")
lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_validated.jsonl.gz
touch data/${lang}/fbank/.cv-${lang}_validated.done
fi
if [ $use_invalidated = true ] && [ -f data/${lang}/fbank/.cv-${lang}_invalidated.done ]; then
log "Also combine features for invalidated data"
pieces=$(find data/${lang}/fbank/cv-${lang}_invalidated_split_${num_splits} -name "cv-${lang}_cuts_invalidated.*.jsonl.gz")
lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_invalidated.jsonl.gz
touch data/${lang}/fbank/.cv-${lang}_invalidated.done
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then
log "Stage 9: Prepare Char based lang"
lang_dir=data/${lang}/lang_char/
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for lang preparation"
# Prepare text.
# Note: in Linux, you can install jq with the following command:
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
# 2. chmod +x ./jq
# 3. cp jq /usr/bin
if [ $use_validated = true ]; then
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_validated.jsonl.gz \
| jq '.text' | sed 's/"//g' >> $lang_dir/text
else
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_train.jsonl.gz \
| jq '.text' | sed 's/"//g' > $lang_dir/text
fi
if [ $use_invalidated = true ]; then
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_invalidated.jsonl.gz \
| jq '.text' | sed 's/"//g' >> $lang_dir/text
fi
if [ $lang == "yue" ] || [ $lang == "zh-HK" ]; then
# Get words.txt and words_no_ids.txt
./local/word_segment_yue.py \
--input-file $lang_dir/text \
--output-dir $lang_dir \
--lang $lang
mv $lang_dir/text $lang_dir/_text
cp $lang_dir/transcript_words.txt $lang_dir/text
if [ ! -f $lang_dir/tokens.txt ]; then
./local/prepare_char.py --lang-dir $lang_dir
fi
else
log "word_segment_${lang}.py not implemented yet"
exit 1
fi
fi
else
log "Stage 9: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/${lang}/lang_bpe_${vocab_size}
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
file=$(
find "data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz"
)
# Prepare text.
# Note: in Linux, you can install jq with the following command:
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
# 2. chmod +x ./jq
# 3. cp jq /usr/bin
gunzip -c ${file} \
| jq '.text' | sed 's/"//g' > $lang_dir/transcript_words.txt
# Ensure space only appears once
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
sed -i 's/[ ][ ]*/ /g' $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/words.txt ]; then
cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' > $lang_dir/words.txt
(echo '!SIL'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
cat - $lang_dir/words.txt | sort | uniq | awk '
BEGIN {
print "<eps> 0";
}
{
if ($1 == "<s>") {
print "<s> is in the vocabulary!" | "cat 1>&2"
exit 1;
}
if ($1 == "</s>") {
print "</s> is in the vocabulary!" | "cat 1>&2"
exit 1;
}
printf("%s %d\n", $1, NR);
}
END {
printf("#0 %d\n", NR+1);
printf("<s> %d\n", NR+2);
printf("</s> %d\n", NR+3);
}' > $lang_dir/words || exit 1;
mv $lang_dir/words $lang_dir/words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
done
fi
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Prepare G"
# We assume you have install kaldilm, if not, please install
# it using: pip install kaldilm
if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then
lang_dir=data/${lang}/lang_char
mkdir -p $lang_dir/lm
for ngram in 3 ; do
if [ ! -f $lang_dir/lm/${ngram}-gram.unpruned.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order ${ngram} \
-text $lang_dir/transcript_words.txt \
-lm $lang_dir/lm/${ngram}gram.unpruned.arpa
fi
if [ ! -f $lang_dir/lm/G_${ngram}_gram_char.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="$lang_dir/words.txt" \
--disambig-symbol='#0' \
--max-order=${ngram} \
$lang_dir/lm/${ngram}gram.unpruned.arpa \
> $lang_dir/lm/G_${ngram}_gram_char.fst.txt
fi
if [ ! -f $lang_dir/lm/HLG.fst ]; then
./local/prepare_lang_fst.py \
--lang-dir $lang_dir \
--ngram-G $lang_dir/lm/G_${ngram}_gram_char.fst.txt
fi
done
else
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/${lang}/lang_bpe_${vocab_size}
mkdir -p $lang_dir/lm
#3-gram used in building HLG, 4-gram used for LM rescoring
for ngram in 3 4; do
if [ ! -f $lang_dir/lm/${ngram}gram.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order ${ngram} \
-text $lang_dir/transcript_words.txt \
-lm $lang_dir/lm/${ngram}gram.arpa
fi
if [ ! -f $lang_dir/lm/${ngram}gram.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="$lang_dir/words.txt" \
--disambig-symbol='#0' \
--max-order=${ngram} \
$lang_dir/lm/${ngram}gram.arpa > $lang_dir/lm/G_${ngram}_gram.fst.txt
fi
done
done
fi
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Compile HLG"
if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then
lang_dir=data/${lang}/lang_char
for ngram in 3 ; do
if [ ! -f $lang_dir/lm/HLG_${ngram}.fst ]; then
./local/compile_hlg.py --lang-dir $lang_dir --lm G_${ngram}_gram_char
fi
done
else
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/${lang}/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir
# Note If ./local/compile_hlg.py throws OOM,
# please switch to the following command
#
# ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
done
fi
fi
# Compile LG for RNN-T fast_beam_search decoding
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 12: Compile LG"
if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then
lang_dir=data/${lang}/lang_char
for ngram in 3 ; do
if [ ! -f $lang_dir/lm/LG_${ngram}.fst ]; then
./local/compile_lg.py --lang-dir $lang_dir --lm G_${ngram}_gram_char
fi
done
else
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/${lang}/lang_bpe_${vocab_size}
./local/compile_lg.py --lang-dir $lang_dir
done
fi
fi