-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattack.py
175 lines (142 loc) · 6.31 KB
/
attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os, gc, math
import numpy as np
import matplotlib.pyplot as plt
from pydub import AudioSegment
from scipy import signal
from scipy.signal import butter, lfilter
from scipy.io import wavfile
from PIL import Image, ImageFilter
from PIL.ImageFilter import MinFilter, MaxFilter
from pytesseract import image_to_string
CURRENT_PATH = os.path.abspath(os.getcwd())
DATA_PATH = "/TOP8/"
def butter_bandpass(lowcut, highcut, fs, order=5):
nyq = 0.5 * fs #Nyquist frequence
if lowcut is None:
high = float(highcut / nyq)
b, a = butter(order, high, btype='low')
elif highcut is None:
low = float(lowcut / nyq)
b, a = butter(order, low, btype='high')
else:
low = float(lowcut / nyq)
high = float(highcut / nyq)
b, a = butter(order, [low, high], btype='band')
return b, a
FILTERS ={
"LP" : butter_bandpass(None, 7350.0, 44100.0, order=5),
"MP" : butter_bandpass(7350.0, 14700.0, 44100.0, order=5),
"HP" : butter_bandpass(14700.0, None, 44100.0, order=5)
}
def change_ext(file_path, ext):
song = AudioSegment.from_wav(file_path)
file_path = file_path.replace("TOP8/","TOP8/EXT/") + "." + ext
song.export(file_path, format="adts" if ext == "aac" else ext)
return file_path
def apply_butter_bandpass_filter(file_path, butter_filter):
samplingFrequency, signalData = wavfile.read(file_path)
b, a = FILTERS[butter_filter]
y = lfilter(b, a, signalData)
file_path = file_path.replace("TOP8/","TOP8/BAND_PASS/").replace(".wav", "_{}.wav".format(butter_filter))
wavfile.write(file_path,samplingFrequency,y)
return file_path
def add_white_noise(file_path,SNR):#Additive white gausian noise.
samplingFrequency, signalData = wavfile.read(file_path)
RMS_s=math.sqrt(np.mean(signalData**2))#RMS value of signal
RMS_n=math.sqrt(RMS_s**2/(pow(10,SNR/20)))#RMS values of noise
#Therefore mean=0, to round you can use RMS as STD
noise=np.random.normal(0, RMS_n, signalData.shape[0])
signal_edit = signalData + noise
file_path = file_path.replace("TOP8/","TOP8/NOISE/").replace(".wav", "_NOISE-{}.wav".format(SNR))
wavfile.write(file_path,samplingFrequency,signal_edit)
return file_path
def calc_specto(wav_overlay_paths, img_wav_paths=[]):
wav_overlay_specto = []
# The wav file must be mono, not stereo
for f_n in wav_overlay_paths:
if f_n.endswith(".ogg"):
ogg_version = AudioSegment.from_ogg(f_n).set_channels(1)
f_n = f_n.replace("TOP8/EXT","TOP8/EXT/SUPPORT") + ".wav"
ogg_version.export(f_n, format="wav")
elif f_n.endswith(".mp3"):
mp3_version = AudioSegment.from_mp3(f_n).set_channels(1)
f_n = f_n.replace("TOP8/EXT","TOP8/EXT/SUPPORT") + ".wav"
mp3_version.export(f_n, format="wav")
elif f_n.endswith(".aac"):
aac_version = AudioSegment.from_file(f_n, "aac").set_channels(1)
f_n = f_n.replace("TOP8/EXT","TOP8/EXT/SUPPORT") + ".wav"
aac_version.export(f_n, format="wav")
if f_n.endswith(".wav"):
samplingFrequency, signalData = wavfile.read(f_n)
frequencies, times, spectrogram = signal.spectrogram(signalData, samplingFrequency)
wav_overlay_specto.append({
"name": (f_n.split("/"))[-1],
"frequencies": frequencies,
"times":times,
"spectrogram": spectrogram
})
return wav_overlay_specto
def create_save_plot(wav_overlay_specto):
for i in range(len(wav_overlay_specto)):
fig, axs = plt.subplots(1, 1, figsize=(150,72), squeeze=False)
fig.suptitle('Fabio Merola W82000188 - MM project - Steganografia audio')
axs[0, 0].pcolormesh(wav_overlay_specto[i]["times"], wav_overlay_specto[i]["frequencies"], np.log(wav_overlay_specto[i]["spectrogram"]))
axs[0, 0].set_title(wav_overlay_specto[i]["name"])
dim = axs[0, 0].get_window_extent().transformed(fig.dpi_scale_trans.inverted())
path = CURRENT_PATH + DATA_PATH + "IMG_SPECTO/" + wav_overlay_specto[i]["name"] + ".png"
fig.savefig(path, bbox_inches=dim)
fig.clear()
plt.close("all")
def images_post_processing():
for filename in os.listdir(CURRENT_PATH + DATA_PATH + "IMG_SPECTO"):
if filename.endswith(".png"):
temp = Image.open(CURRENT_PATH + DATA_PATH + "IMG_SPECTO/" + filename)
temp = temp.convert('LA')
temp = temp.point(lambda p: 0 if p>=245 else p)
temp = temp.filter(MaxFilter(size=9)) #Dilatation
temp = temp.filter(MinFilter(size=9)) #Erosion
temp = temp.point(lambda p: 0 if p<205 else 255) #Tresholding
width, height = temp.size # Get dimensions
temp = temp.convert('RGB')
width /= 6
height /= 6
newsize = (int(width), int(height))
temp = temp.resize(newsize) #Resize for better OCR read
temp = temp.point(lambda p: 0 if p!=255 else 255) # delete interpolation artifacts
left = 1
top = 1
right = width-1
bottom = height-1
temp = temp.crop((left, top, right, bottom)) # This crop removes white borders in order to improve the reading of OCR
temp.save(CURRENT_PATH + DATA_PATH + "POST_P_IMG/" + filename + ".png")
def images_in_ocr():
for filename in os.listdir(CURRENT_PATH + DATA_PATH + "POST_P_IMG"):
if filename.endswith(".png"):
text = image_to_string(Image.open(CURRENT_PATH + DATA_PATH + "POST_P_IMG/"+filename))
print("- IMG: {}\n\t- OCR_TEXT: {}".format(filename.encode('ascii', 'replace'), text.encode('ascii', 'replace')))
if __name__ == '__main__':
folders_needed = ["EXT", "EXT/SUPPORT", "BAND_PASS", "NOISE", "IMG_SPECTO", "POST_P_IMG"]
SNR = [5,10,20, 50] #SNR -> Signal to Noise Ratio
EXT = ["mp3", "ogg", "aac"]
wav_paths = []
if not os.path.exists(CURRENT_PATH + DATA_PATH[:-1]):
os.mkdir(CURRENT_PATH + DATA_PATH[:-1])
for folder in folders_needed:
if not os.path.exists(CURRENT_PATH + DATA_PATH + folder):
os.mkdir(CURRENT_PATH + DATA_PATH + folder)
for filename in os.listdir(CURRENT_PATH + DATA_PATH[:-1]):
if filename.endswith(".wav"):
print("\n\nSTARTING WORKING WITH: {}\n\n".format(filename))
filename = CURRENT_PATH + DATA_PATH + filename
wav_paths += [change_ext(filename, ext) for ext in EXT]
wav_paths += [apply_butter_bandpass_filter(filename, butter_filter) for butter_filter in FILTERS.keys()]
wav_paths += [add_white_noise(filename,snr) for snr in SNR]
print("\n\nSTARTING CALC_SPECTO\n\n")
wav_overlay_specto = calc_specto(wav_overlay_paths=wav_paths)
gc.collect()
print("\n\nSTARTING CREATE_SAVE_PLOT\n\n")
create_save_plot(wav_overlay_specto=wav_overlay_specto)
print("\n\nSTARTING IMAGES_POST_PROCESSING\n\n")
images_post_processing()
print("\n\nSTARTING IMAGES_IN_OCR\n\n")
images_in_ocr()