Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Same data but different results when using drm() on different OSs #33

Open
annaquaglieri16 opened this issue Jul 17, 2023 · 0 comments
Open

Comments

@annaquaglieri16
Copy link

Hi there,

I'd like to highlight some differences that I found when running the drm() function on my Mac (Processor 2.6 GHz 6-Core Intel Core i7) vs an Amazon Linux machine.

I attached the example dataset input_data.txt.

Example:

input_data = read.table(file.path(here(), "tests/test-data/input_data.txt"))
drm(response ~ dose, data = input_data, fct = L.4())

Results from my Mac

Model fitted: Logistic (ED50 as parameter) (4 parms)

Parameter estimates:

                 Estimate  Std. Error t-value   p-value    
b:(Intercept) -2.3306e-01  7.0496e-01 -0.3306 0.7434100    
c:(Intercept)  4.4357e+05  1.3346e+05  3.3236 0.0024854 ** 
d:(Intercept)  1.3001e+06  3.2732e+05  3.9720 0.0004529 ***
e:(Intercept)  5.2777e+01  1.2060e+01  4.3763 0.0001521 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error:

 654792.8 (28 degrees of freedom)

When running on an Amazon Linux machine:

Model fitted: Logistic (ED50 as parameter) (4 parms)
--
  |  
  | Parameter estimates:
  |  
  | Estimate  Std. Error t-value   p-value
  | b:(Intercept) -2.3552e-01  7.2686e-01 -0.3240 0.7483338
  | c:(Intercept)  4.4373e+05  1.3397e+05  3.3122 0.0025592 **
  | d:(Intercept)  1.2999e+06  3.2735e+05  3.9711 0.0004540 ***
  | e:(Intercept)  5.2747e+01  1.2068e+01  4.3709 0.0001543 ***
  | ---
  | Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  |  
  | Residual standard error:
  |  
  | 654788.4 (28 degrees of freedom)

All the estimates are slightly but I believe not negligibly different.
Do you have any insights into how I can improve the reproducibility of the results?
Thanks for all your work and your help,

Anna

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant