We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hey there, I was trying to calculate RNA-seq read saturation and ran into the issue:
predict
Is this related to drm returning a model with 1 less parameter? Or somewhat intended behaviour as a fixed parameter contains no uncertainty?
When using MM.2() kinetics with fixed asymptote:
# input data > head(sat) saturation total_reads <num> <int> 1: 0.1685059 494784 2: 0.2575534 2974401 3: 0.3329197 5445163 4: 0.3980089 7920298 5: 0.4538969 10405968 6: 0.5019354 12884013 > model.drm <- drm(saturation ~ total_reads, data = sat, fct = MM.2(fixed = c(1,NA), names=c("d","e"))) # data to extrapolate and predict confidence intervals to > mml <- data.frame(reads = seq(0, max(sat$total_reads)*2, length.out = 1000)) > summary(model.drm) Model fitted: Michaelis-Menten (1 parms) Parameter estimates: Estimate Std. Error t-value p-value e:(Intercept) 11937044 626398 19.057 2.214e-13 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.03482782 (18 degrees of freedom) # prediction fails with the error below > pred <- predict(model.drm, newdata = mml, interval = "confidence", level = 0.95) Error in indexMat[, groupLevels, drop = FALSE] : incorrect number of dimensions
When using MM.2() kinetics with no fixed parameters:
> model.drm <- drm(sat ~ total_reads, data = sat, fct = MM.2()) > summary(model.drm) Model fitted: Michaelis-Menten (2 parms) Parameter estimates: Estimate Std. Error t-value p-value d:(Intercept) 9.9953e-01 1.3612e-02 73.432 <2e-16 *** e:(Intercept) 1.1920e+07 8.0763e+05 14.759 4e-11 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.03583626 (17 degrees of freedom) > pred <- predict(model.drm, newdata = mml, interval = "confidence", level = 0.95) > head(pred) Prediction Lower Upper [1,] 0.00000000 0.00000000 0.00000000 [2,] 0.07677375 0.06779986 0.08574764 [3,] 0.14259479 0.12724126 0.15794832 [4,] 0.19965087 0.17974278 0.21955896 [5,] 0.24958346 0.22642738 0.27273955 [6,] 0.29364824 0.26819302 0.31910345
Session Info
> sessionInfo() R version 4.4.0 (2024-04-24) Platform: x86_64-pc-linux-gnu Running under: Rocky Linux 9.4 (Blue Onyx) Matrix products: default BLAS/LAPACK: FlexiBLAS OPENBLAS; LAPACK version 3.11.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: Europe/Berlin tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods base other attached packages: [1] drc_3.0-1 MASS_7.3-60.2 pbapply_1.7-2 scales_1.3.0 [5] rhdf5_2.48.0 glue_1.7.0 ggtext_0.1.2 lubridate_1.9.3 [9] forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4 purrr_1.0.2 [13] readr_2.1.5 tidyr_1.3.1 tibble_3.2.1 ggplot2_3.5.1 [17] tidyverse_2.0.0 DropletUtils_1.24.0 SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0 [21] Biobase_2.64.0 GenomicRanges_1.56.0 GenomeInfoDb_1.40.0 IRanges_2.38.0 [25] S4Vectors_0.42.0 BiocGenerics_0.50.0 MatrixGenerics_1.16.0 matrixStats_1.3.0 [29] data.table_1.15.4 loaded via a namespace (and not attached): [1] tidyselect_1.2.1 farver_2.1.2 R.utils_2.12.3 TH.data_1.1-2 [5] timechange_0.3.0 lifecycle_1.0.4 survival_3.6-4 statmod_1.5.0 [9] magrittr_2.0.3 compiler_4.4.0 rlang_1.1.4 tools_4.4.0 [13] plotrix_3.8-4 utf8_1.2.4 labeling_0.4.3 S4Arrays_1.4.0 [17] dqrng_0.4.1 DelayedArray_0.30.1 xml2_1.3.6 pkgload_1.3.4 [21] multcomp_1.4-25 abind_1.4-5 BiocParallel_1.38.0 HDF5Array_1.32.0 [25] withr_3.0.0 R.oo_1.26.0 grid_4.4.0 fansi_1.0.6 [29] beachmat_2.20.0 colorspace_2.1-0 Rhdf5lib_1.26.0 edgeR_4.2.0 [33] gtools_3.9.5 mvtnorm_1.2-4 cli_3.6.3 crayon_1.5.3 [37] generics_0.1.3 rstudioapi_0.16.0 httr_1.4.7 tzdb_0.4.0 [41] DelayedMatrixStats_1.26.0 scuttle_1.14.0 splines_4.4.0 zlibbioc_1.50.0 [45] parallel_4.4.0 XVector_0.44.0 vctrs_0.6.5 sandwich_3.1-0 [49] Matrix_1.7-0 jsonlite_1.8.8 carData_3.0-5 car_3.1-2 [53] hms_1.1.3 locfit_1.5-9.9 limma_3.60.0 codetools_0.2-20 [57] stringi_1.8.4 gtable_0.3.5 UCSC.utils_1.0.0 munsell_0.5.1 [61] pillar_1.9.0 rhdf5filters_1.16.0 GenomeInfoDbData_1.2.12 R6_2.5.1 [65] sparseMatrixStats_1.16.0 lattice_0.22-6 R.methodsS3_1.8.2 gridtext_0.1.5 [69] Rcpp_1.0.12 SparseArray_1.4.3 zoo_1.8-12 pkgconfig_2.0.3
Best wishes, Falko
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hey there,
I was trying to calculate RNA-seq read saturation and ran into the issue:
predict
seems to be unable to calculate confidence intervals when using fixed parameters.Is this related to drm returning a model with 1 less parameter? Or somewhat intended behaviour as a fixed parameter contains no uncertainty?
When using MM.2() kinetics with fixed asymptote:
When using MM.2() kinetics with no fixed parameters:
Session Info
Best wishes,
Falko
The text was updated successfully, but these errors were encountered: