-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathload_materials.py
59 lines (45 loc) · 1.92 KB
/
load_materials.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from __future__ import print_function
import torch
import torch.utils.data
import torchvision.transforms as transforms
from data.random_shuffle_dataset import RandomShuffleDataset
import utils
def LoadDataset(opt):
cate2label = utils.cate2label(opt.dataset_name)
train_dataset = RandomShuffleDataset(
video_root=opt.train_video_root,
video_list=opt.train_list_root,
rectify_label=cate2label,
isTrain= True,
transform=transforms.Compose([transforms.ToTensor()]),
opt=opt
)
val_dataset = RandomShuffleDataset(
video_root=opt.test_video_root,
video_list=opt.test_list_root,
rectify_label=cate2label,
isTrain = False,
transform=transforms.Compose([transforms.ToTensor()]),
opt=opt
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=opt.batch_size, shuffle=True,num_workers=opt.num_threads,
pin_memory=True, drop_last=True) #True若数据集大小不能被batch_size整除,则删除最后一个不完整的批处理。
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=opt.batch_size, shuffle=False,num_workers=opt.num_threads,
pin_memory=True)
return train_loader, val_loader
def LoadParameter(_structure, _parameterDir):
checkpoint = torch.load(_parameterDir)
pretrained_state_dict = checkpoint['state_dict']
model_state_dict = _structure.state_dict()
for key in pretrained_state_dict:
if ((key == 'module.fc.weight') | (key == 'module.fc.bias') | (key == 'module.feature.weight') | (key == 'module.feature.bias')):
pass
else:
model_state_dict[key.replace('module.', '')] = pretrained_state_dict[key]
_structure.load_state_dict(model_state_dict)
model = torch.nn.DataParallel(_structure).cuda()
return model