-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathperformance_scan_figure2i.py
90 lines (70 loc) · 3.29 KB
/
performance_scan_figure2i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import sys
import numpy as np
import circularFiltering as flt
from time import time
kappa_z_array = np.array([0.01,0.03,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,2,3,4,5,6,7,8,9,10,30,100])
# choose a kappa_z according to system variable
kappa_z = kappa_z_array[int(sys.argv[1])]
# choose kappa according to input variable
kappa = float(sys.argv[2])
# pass the number of iterations
nIter = 10000
# where to save
filename = "data_raw/figure2i/k="+str(kappa)+"_kz="+str(kappa_z)
# model parameters
T = 20 # simulation time
dt = 0.01 # step size
t = np.arange(0,T,dt)
alpha = flt.xi_fun_inv(kappa_z * dt)
timesteps = int(T/dt)
kappa_phi = 1 # inverse diffusion constant
phi_0 = 0 # initial mean
kappa_0 = 20 # initial certainty
kappa_y = 1 # certainty of increment observations
# run the simulations and read out first and second order statistics for each time step
phi_final = np.zeros([nIter])
vonMises = np.zeros([nIter,2])
vonMises_q = np.zeros([nIter,2])
noUncert = np.zeros([nIter])
PF = np.zeros([nIter,2])
start = time()
if kappa == 0.1:
for i in range(0, nIter): # run for nIter iterations
# generate data
phi, dy, z = flt.generateData(T,kappa_phi,kappa_y=kappa_y,dt=dt,phi_0=phi_0,kappa_0=kappa_0,kappa_z=alpha)
# Particle Filter
N = 1000
mu_PF, r_PF = flt.PF_run(T,N,kappa_phi,dy=dy,z=z,kappa_z=alpha,
kappa_y=kappa_y,phi_0=phi_0,kappa_0=kappa_0,dt=dt)
# von Mises projection filter
mu_VM, kappa_VM = flt.vM_Projection_Run(T,kappa_phi,dy=dy,kappa_y=kappa_y,z=z,kappa_z=alpha,
phi_0=phi_0,kappa_0=kappa_0,dt=dt)
# von Mises projection filter, quadratic approximation
mu_VMq, kappa_VMq = flt.vM_Projection_quad_Run(T,kappa_phi,dy=dy,kappa_y=kappa_y,z=z,kappa_z=alpha,
phi_0=phi_0,kappa_0=kappa_0,dt=dt)
# uncertainty-free filter
mu_noUncert = flt.no_uncertainty_filter_Run(T,kappa,kappa_phi,dy=dy,kappa_y=kappa_y,z=z,kappa_z=alpha,
phi_0=phi_0,kappa_0=kappa_0,dt=dt)
# read out statistics at end of simulation
phi_final[i] = phi[-1]
vonMises[i] = np.array([mu_VM[-1],kappa_VM[-1]])
vonMises_q[i] = np.array([mu_VMq[-1],kappa_VMq[-1]])
PF[i] = np.array([mu_PF[-1],r_PF[-1]])
noUncert[i] = mu_noUncert[-1]
np.savez(filename,phi_final=phi_final,vonMises=vonMises,vonMises_q=vonMises_q,PF=PF,
noUncert=noUncert,kappa_phi=kappa_phi,kappa_y=kappa_y,kappa_z=kappa_z,T=T,dt=dt)
else:
for i in range(0, nIter): # run for nIter iterations
# generate data
phi, dy, z = flt.generateData(T,kappa_phi,kappa_y=kappa_y,dt=dt,phi_0=phi_0,kappa_0=kappa_0,kappa_z=alpha)
# uncertainty-free filter
mu_noUncert = flt.no_uncertainty_filter_Run(T,kappa,kappa_phi,dy=dy,kappa_y=kappa_y,z=z,kappa_z=alpha,
phi_0=phi_0,kappa_0=kappa_0,dt=dt)
# read out statistics at end of simulation
phi_final[i] = phi[-1]
noUncert[i] = mu_noUncert[-1]
np.savez(filename,phi_final=phi_final,
noUncert=noUncert,kappa_phi=kappa_phi,kappa_y=kappa_y,kappa_z=kappa_z,T=T,dt=dt)
print('k = '+ str(kappa) +'kappa_z = '+str(kappa_z)+' done \n')
end = time()
print(f'It took {end - start} seconds!')