diff --git a/notebooks/09_Combinatorial_Method_Usage_with_FingerPrint_Transformers.ipynb b/notebooks/09_Combinatorial_Method_Usage_with_FingerPrint_Transformers.ipynb
new file mode 100644
index 0000000..08030d8
--- /dev/null
+++ b/notebooks/09_Combinatorial_Method_Usage_with_FingerPrint_Transformers.ipynb
@@ -0,0 +1,699 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example: Using Multiple Different Fingerprint Transformer\n",
+ "\n",
+ "In this notebook we will explore how to evaluate the performance of machine learning models depending on different fingerprint transformers (Featurization techniques). This is an example, that you easily could adapt for many different combinations of featurizers, optimizaiton and other modelling techniques.\n",
+ "\n",
+ "Following steps will happen:\n",
+ "* Data Parsing\n",
+ "* Pipeline Building\n",
+ "* Training Phase\n",
+ "* Analysis\n",
+ "\n",
+ "Authors: @VincentAlexanderScholz, @RiesBen \n",
+ "\n",
+ "## Imports:\n",
+ "First we will import all the stuff that we will need for our work.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "from time import time\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "from rdkit.Chem import PandasTools\n",
+ "\n",
+ "from sklearn.model_selection import GridSearchCV\n",
+ "from sklearn.pipeline import Pipeline, make_pipeline\n",
+ "from sklearn.linear_model import Ridge\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "\n",
+ "from scikit_mol import fingerprints\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Get Data:\n",
+ "In this step we will check if the SLC6A4 data set is already present or needs to be downloaded.\n",
+ "\n",
+ "\n",
+ "**WARNING:** The Dataset is a simple and very well selected"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0 out of 200 SMILES failed in conversion\n"
+ ]
+ }
+ ],
+ "source": [
+ "full_set = False\n",
+ "\n",
+ "# if not present download example data\n",
+ "if full_set:\n",
+ " csv_file = \"SLC6A4_active_excape_export.csv\"\n",
+ " if not os.path.exists(csv_file):\n",
+ " import urllib.request\n",
+ " url = \"https://ndownloader.figshare.com/files/25747817\"\n",
+ " urllib.request.urlretrieve(url, csv_file)\n",
+ "else:\n",
+ " csv_file = '../tests/data/SLC6A4_active_excapedb_subset.csv'\n",
+ "\n",
+ "#Parse Database\n",
+ "data = pd.read_csv(csv_file)\n",
+ "\n",
+ "PandasTools.AddMoleculeColumnToFrame(data, smilesCol=\"SMILES\")\n",
+ "print(f\"{data.ROMol.isna().sum()} out of {len(data)} SMILES failed in conversion\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Build Pipeline:\n",
+ "In this stage we will build the Pipeline consisting of the featurization part (finger print transformers) and the model part (Ridge Regression).\n",
+ "\n",
+ "Note that the featurization in this section is an hyperparameter, living in `param_grid`, and the `\"fp_transformer\"` string is just a placeholder, being replaced during pipeline execution. \n",
+ "\n",
+ "This way we can define multiple different scenarios in `param_grid`, that allow us to rapidly explore different combinations of settings and methodologies."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-22T11:29:15.949644Z",
+ "start_time": "2023-09-22T11:29:15.461010Z"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[{'fp_transformer': [MorganFingerprintTransformer(),\n",
+ " AvalonFingerprintTransformer()],\n",
+ " 'fp_transformer__nBits': [256, 512, 1024, 2048, 4096],\n",
+ " 'regressor__alpha': array([0.1 , 0.325, 0.55 , 0.775, 1. ])},\n",
+ " {'fp_transformer': [RDKitFingerprintTransformer(),\n",
+ " AtomPairFingerprintTransformer(),\n",
+ " MACCSKeysFingerprintTransformer()],\n",
+ " 'regressor__alpha': array([0.1 , 0.325, 0.55 , 0.775, 1. ])}]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "\n",
+ "regressor = Ridge()\n",
+ "optimization_pipe = Pipeline([(\"fp_transformer\", \"fp_transformer\"), # this is a placeholder for different transformers\n",
+ " (\"regressor\", regressor)])\n",
+ "\n",
+ "param_grid = [ # Here pass different Options and Approaches\n",
+ " {\n",
+ " \"fp_transformer\": [fingerprints.MorganFingerprintTransformer(),\n",
+ " fingerprints.AvalonFingerprintTransformer()],\n",
+ " \"fp_transformer__nBits\": [2**x for x in range(8,13)],\n",
+ " },\n",
+ " {\n",
+ " \"fp_transformer\": [fingerprints.RDKitFingerprintTransformer(),\n",
+ " fingerprints.AtomPairFingerprintTransformer(),\n",
+ " fingerprints.MACCSKeysFingerprintTransformer()], \n",
+ " },\n",
+ "]\n",
+ "\n",
+ "global_options = {\n",
+ " \"regressor__alpha\": np.linspace(0.1,1,5),\n",
+ "}\n",
+ "\n",
+ "[params.update(global_options) for params in param_grid]\n",
+ "\n",
+ "param_grid"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Train Model\n",
+ "In this section, the combinatorial approaches are trained."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-22T11:29:15.960939Z",
+ "start_time": "2023-09-22T11:29:15.461078Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Runtime: 21.90\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Split Data\n",
+ "mol_list_train, mol_list_test, y_train, y_test = train_test_split(data.ROMol, data.pXC50, random_state=0)\n",
+ "\n",
+ "# Define Search Process\n",
+ "grid = GridSearchCV(optimization_pipe, n_jobs=1,\n",
+ " param_grid=param_grid)\n",
+ "\n",
+ "# Train\n",
+ "t0 = time()\n",
+ "grid.fit(mol_list_train, y_train.values)\n",
+ "t1 = time()\n",
+ "\n",
+ "print(f'Runtime: {t1-t0:0.2F}')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Analysis\n",
+ "\n",
+ "Now let's investigate our results from the training stage. Which one is the best finger print method for this data set? Which parameters are optimal?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " mean_fit_time | \n",
+ " std_fit_time | \n",
+ " mean_score_time | \n",
+ " std_score_time | \n",
+ " param_fp_transformer | \n",
+ " param_fp_transformer__nBits | \n",
+ " param_regressor__alpha | \n",
+ " params | \n",
+ " split0_test_score | \n",
+ " split1_test_score | \n",
+ " split2_test_score | \n",
+ " split3_test_score | \n",
+ " split4_test_score | \n",
+ " mean_test_score | \n",
+ " std_test_score | \n",
+ " rank_test_score | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.008671 | \n",
+ " 0.000448 | \n",
+ " 0.002286 | \n",
+ " 0.000069 | \n",
+ " MorganFingerprintTransformer(nBits=1024) | \n",
+ " 256 | \n",
+ " 0.1 | \n",
+ " {'fp_transformer': MorganFingerprintTransforme... | \n",
+ " 0.017975 | \n",
+ " 0.394682 | \n",
+ " 0.524598 | \n",
+ " 0.542116 | \n",
+ " 0.310238 | \n",
+ " 0.357922 | \n",
+ " 0.190209 | \n",
+ " 25 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.008333 | \n",
+ " 0.000125 | \n",
+ " 0.002222 | \n",
+ " 0.000054 | \n",
+ " MorganFingerprintTransformer(nBits=1024) | \n",
+ " 256 | \n",
+ " 0.325 | \n",
+ " {'fp_transformer': MorganFingerprintTransforme... | \n",
+ " 0.078758 | \n",
+ " 0.449548 | \n",
+ " 0.554241 | \n",
+ " 0.572363 | \n",
+ " 0.330543 | \n",
+ " 0.397090 | \n",
+ " 0.181071 | \n",
+ " 24 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.008217 | \n",
+ " 0.000048 | \n",
+ " 0.002193 | \n",
+ " 0.000059 | \n",
+ " MorganFingerprintTransformer(nBits=1024) | \n",
+ " 256 | \n",
+ " 0.55 | \n",
+ " {'fp_transformer': MorganFingerprintTransforme... | \n",
+ " 0.128221 | \n",
+ " 0.490253 | \n",
+ " 0.575230 | \n",
+ " 0.593237 | \n",
+ " 0.344076 | \n",
+ " 0.426203 | \n",
+ " 0.173061 | \n",
+ " 23 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.008227 | \n",
+ " 0.000063 | \n",
+ " 0.002188 | \n",
+ " 0.000054 | \n",
+ " MorganFingerprintTransformer(nBits=1024) | \n",
+ " 256 | \n",
+ " 0.775 | \n",
+ " {'fp_transformer': MorganFingerprintTransforme... | \n",
+ " 0.169585 | \n",
+ " 0.521723 | \n",
+ " 0.590890 | \n",
+ " 0.608380 | \n",
+ " 0.353866 | \n",
+ " 0.448889 | \n",
+ " 0.166100 | \n",
+ " 22 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.008226 | \n",
+ " 0.000055 | \n",
+ " 0.002255 | \n",
+ " 0.000130 | \n",
+ " MorganFingerprintTransformer(nBits=1024) | \n",
+ " 256 | \n",
+ " 1.0 | \n",
+ " {'fp_transformer': MorganFingerprintTransforme... | \n",
+ " 0.204831 | \n",
+ " 0.546774 | \n",
+ " 0.603010 | \n",
+ " 0.619752 | \n",
+ " 0.361324 | \n",
+ " 0.467138 | \n",
+ " 0.160060 | \n",
+ " 21 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 60 | \n",
+ " 0.085913 | \n",
+ " 0.001511 | \n",
+ " 0.021645 | \n",
+ " 0.001469 | \n",
+ " MACCSKeysFingerprintTransformer() | \n",
+ " NaN | \n",
+ " 0.1 | \n",
+ " {'fp_transformer': MACCSKeysFingerprintTransfo... | \n",
+ " -1.649022 | \n",
+ " -1.943461 | \n",
+ " -0.602509 | \n",
+ " -0.418328 | \n",
+ " -0.752525 | \n",
+ " -1.073169 | \n",
+ " 0.606987 | \n",
+ " 65 | \n",
+ "
\n",
+ " \n",
+ " 61 | \n",
+ " 0.085902 | \n",
+ " 0.001496 | \n",
+ " 0.021606 | \n",
+ " 0.001491 | \n",
+ " MACCSKeysFingerprintTransformer() | \n",
+ " NaN | \n",
+ " 0.325 | \n",
+ " {'fp_transformer': MACCSKeysFingerprintTransfo... | \n",
+ " -0.969593 | \n",
+ " -0.813087 | \n",
+ " -0.188690 | \n",
+ " 0.003831 | \n",
+ " -0.314764 | \n",
+ " -0.456461 | \n",
+ " 0.372595 | \n",
+ " 64 | \n",
+ "
\n",
+ " \n",
+ " 62 | \n",
+ " 0.085937 | \n",
+ " 0.001397 | \n",
+ " 0.021608 | \n",
+ " 0.001495 | \n",
+ " MACCSKeysFingerprintTransformer() | \n",
+ " NaN | \n",
+ " 0.55 | \n",
+ " {'fp_transformer': MACCSKeysFingerprintTransfo... | \n",
+ " -0.657588 | \n",
+ " -0.505782 | \n",
+ " -0.045940 | \n",
+ " 0.124510 | \n",
+ " -0.171340 | \n",
+ " -0.251228 | \n",
+ " 0.289700 | \n",
+ " 62 | \n",
+ "
\n",
+ " \n",
+ " 63 | \n",
+ " 0.086048 | \n",
+ " 0.001313 | \n",
+ " 0.021615 | \n",
+ " 0.001478 | \n",
+ " MACCSKeysFingerprintTransformer() | \n",
+ " NaN | \n",
+ " 0.775 | \n",
+ " {'fp_transformer': MACCSKeysFingerprintTransfo... | \n",
+ " -0.468371 | \n",
+ " -0.356825 | \n",
+ " 0.036642 | \n",
+ " 0.182939 | \n",
+ " -0.087318 | \n",
+ " -0.138587 | \n",
+ " 0.242115 | \n",
+ " 59 | \n",
+ "
\n",
+ " \n",
+ " 64 | \n",
+ " 0.085954 | \n",
+ " 0.001460 | \n",
+ " 0.021591 | \n",
+ " 0.001460 | \n",
+ " MACCSKeysFingerprintTransformer() | \n",
+ " NaN | \n",
+ " 1.0 | \n",
+ " {'fp_transformer': MACCSKeysFingerprintTransfo... | \n",
+ " -0.339715 | \n",
+ " -0.266652 | \n",
+ " 0.092180 | \n",
+ " 0.218357 | \n",
+ " -0.028878 | \n",
+ " -0.064942 | \n",
+ " 0.210919 | \n",
+ " 57 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
65 rows × 16 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " mean_fit_time std_fit_time mean_score_time std_score_time \\\n",
+ "0 0.008671 0.000448 0.002286 0.000069 \n",
+ "1 0.008333 0.000125 0.002222 0.000054 \n",
+ "2 0.008217 0.000048 0.002193 0.000059 \n",
+ "3 0.008227 0.000063 0.002188 0.000054 \n",
+ "4 0.008226 0.000055 0.002255 0.000130 \n",
+ ".. ... ... ... ... \n",
+ "60 0.085913 0.001511 0.021645 0.001469 \n",
+ "61 0.085902 0.001496 0.021606 0.001491 \n",
+ "62 0.085937 0.001397 0.021608 0.001495 \n",
+ "63 0.086048 0.001313 0.021615 0.001478 \n",
+ "64 0.085954 0.001460 0.021591 0.001460 \n",
+ "\n",
+ " param_fp_transformer param_fp_transformer__nBits \\\n",
+ "0 MorganFingerprintTransformer(nBits=1024) 256 \n",
+ "1 MorganFingerprintTransformer(nBits=1024) 256 \n",
+ "2 MorganFingerprintTransformer(nBits=1024) 256 \n",
+ "3 MorganFingerprintTransformer(nBits=1024) 256 \n",
+ "4 MorganFingerprintTransformer(nBits=1024) 256 \n",
+ ".. ... ... \n",
+ "60 MACCSKeysFingerprintTransformer() NaN \n",
+ "61 MACCSKeysFingerprintTransformer() NaN \n",
+ "62 MACCSKeysFingerprintTransformer() NaN \n",
+ "63 MACCSKeysFingerprintTransformer() NaN \n",
+ "64 MACCSKeysFingerprintTransformer() NaN \n",
+ "\n",
+ " param_regressor__alpha params \\\n",
+ "0 0.1 {'fp_transformer': MorganFingerprintTransforme... \n",
+ "1 0.325 {'fp_transformer': MorganFingerprintTransforme... \n",
+ "2 0.55 {'fp_transformer': MorganFingerprintTransforme... \n",
+ "3 0.775 {'fp_transformer': MorganFingerprintTransforme... \n",
+ "4 1.0 {'fp_transformer': MorganFingerprintTransforme... \n",
+ ".. ... ... \n",
+ "60 0.1 {'fp_transformer': MACCSKeysFingerprintTransfo... \n",
+ "61 0.325 {'fp_transformer': MACCSKeysFingerprintTransfo... \n",
+ "62 0.55 {'fp_transformer': MACCSKeysFingerprintTransfo... \n",
+ "63 0.775 {'fp_transformer': MACCSKeysFingerprintTransfo... \n",
+ "64 1.0 {'fp_transformer': MACCSKeysFingerprintTransfo... \n",
+ "\n",
+ " split0_test_score split1_test_score split2_test_score \\\n",
+ "0 0.017975 0.394682 0.524598 \n",
+ "1 0.078758 0.449548 0.554241 \n",
+ "2 0.128221 0.490253 0.575230 \n",
+ "3 0.169585 0.521723 0.590890 \n",
+ "4 0.204831 0.546774 0.603010 \n",
+ ".. ... ... ... \n",
+ "60 -1.649022 -1.943461 -0.602509 \n",
+ "61 -0.969593 -0.813087 -0.188690 \n",
+ "62 -0.657588 -0.505782 -0.045940 \n",
+ "63 -0.468371 -0.356825 0.036642 \n",
+ "64 -0.339715 -0.266652 0.092180 \n",
+ "\n",
+ " split3_test_score split4_test_score mean_test_score std_test_score \\\n",
+ "0 0.542116 0.310238 0.357922 0.190209 \n",
+ "1 0.572363 0.330543 0.397090 0.181071 \n",
+ "2 0.593237 0.344076 0.426203 0.173061 \n",
+ "3 0.608380 0.353866 0.448889 0.166100 \n",
+ "4 0.619752 0.361324 0.467138 0.160060 \n",
+ ".. ... ... ... ... \n",
+ "60 -0.418328 -0.752525 -1.073169 0.606987 \n",
+ "61 0.003831 -0.314764 -0.456461 0.372595 \n",
+ "62 0.124510 -0.171340 -0.251228 0.289700 \n",
+ "63 0.182939 -0.087318 -0.138587 0.242115 \n",
+ "64 0.218357 -0.028878 -0.064942 0.210919 \n",
+ "\n",
+ " rank_test_score \n",
+ "0 25 \n",
+ "1 24 \n",
+ "2 23 \n",
+ "3 22 \n",
+ "4 21 \n",
+ ".. ... \n",
+ "60 65 \n",
+ "61 64 \n",
+ "62 62 \n",
+ "63 59 \n",
+ "64 57 \n",
+ "\n",
+ "[65 rows x 16 columns]"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_training_stats = pd.DataFrame(grid.cv_results_)\n",
+ "df_training_stats"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAJrCAYAAADTQxONAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABrEElEQVR4nO3dd3xtVZn/8c+XC4INUVSw0UYUUbEh6lhAEVFRsaLYKJZRx96wi87oKIKjKBYUBXRkbKio2BWsgIBK/aGINJGhqPTO8/tj78Dh3HNyk3t3snNyP+/XK6+cs/bOyZNkJ1nPXms9K1WFJEmSJGlpq/QdgCRJkiQtVCZMkiRJkjSGCZMkSZIkjWHCJEmSJEljmDBJkiRJ0hgmTJIkSZI0hgmTJM1CktOTHLYCH39YktO7i+iG110lye5JTktybZIV3jNiRb/WxSDJzkkqyVZ9xzJJkmyY5JtJzm+/f/v3HZMkLS8TJmkllGSrthMz+HZl29n+fJJ7zUMMT02y+yw/5rA21muSrDvmnI8OfE1bdRDqpNgJeDfwM+BFwAumO7lNhoavgam3T81HwCuLNpF96gzPne7nMvy21ZwGvmL2B7YEPkhzLX6612jm2cDfqpm87dx3vJKmt2rfAUjq1UHAoe3jmwObAS8GnpHkvlV1xhx+7qfSdPJ3n+XHXdu+fwHwocEDSW4GPA+4ElhjxcKbONsAFwEvrpnvSH428NYR7X9s398TWNl3N/8C8L/A1SvwGu8GDgC+OYNzXwvcauD5vYC3Ad8ADh469+QViGnOJFkdeCTw8aras+94evI+4LMDz28P/DfwC2DfoXN/PV9BSVo+JkzSyu3YqvriYEOSPwEfBZ5O8w9+obkK+CmwC0MJE7A9sDbwJeC58xxX39YF/jmLZAngouGf/6CqumrFw5o/SW5dVZd0+VpVdR1wXRevORNV9c2hOLaiSZiOm+5n1Z7b2de/gtYBAvy96xdeQF8jSZYAq1fV5cPHqupHQ+duQPP39LRl/RwlLTxOyZM07Jz2/VJ31JM8O8kvk1yS5PIkRyZ55ojztktyeJILklyR5MwkBye5R3v8MJrRJZZzasrngXslechQ+y7AH4DfjfqgJLdPsk+Ss5Jc3b7fJ8naI869W5KvJLkoycVJvp3kX8YFlOSxSX6Y5J/t9Mbjkrxshl/PWElenOTY9vt4Ufs5HjFwfKt2vdKjgfUHvpf7d/C5l1rDNNWWZJMk322vhYuSfG3UNMkkm7UxX5bkwiQHtD+HkTHO4hqrJPsn2bo9/1Lg2+2x3dvj906yd5Jz2+/fkUm2nuVrLbWGaaDtMUnemOTPSa5K8sckOw2ct0FuXEu20+C1PqMfwDTan8HpSTZqv/d/By5uj62S5O1Jft5+7Ve3v4OfHL7Wp2Jsv2dPSvLb9vr9W5IPJVl16Px7J/lqkr+2X/O5SX6WZLv2+P7A1Mj0uzM0fTDJqkl2S3JS+3kuTPKNJPedJq5nJzkmyRXAx9rjUz+zxyT5TXutnJ1kt/b4bZPsl+S89th3ktx5xPfxNkk+mOTU9us5P8lBSTYaOm/qZ/7YJO9M8meakewdlusH2LzmIe3vxZojjm3Rfr53jvh+7Jjm78uV7c919+GfU/sxd2p/5me218A5SfZNcsfljVlaWTnCJK3cbpHk9u3jmwP3oZlKcgHw9cETk/wn8Hbg+8A7geuBpwFfTfLKqtqnPW9L4BDgeOC/gH8CdwYeC9ydZrrX+2hu2DySm661menUlO8A5wG7Ake2n/fOwOOA1wM3G/6AJLdpX//uwOeAY4EHAC8HHpNki6k710nWAn4O3A34FHASzXqMn7Xfp+HXfml73hHt13YZzRS5Tyb5l6p60wy/ruHX/SDwZuAomlGGWwMvBX6WZPuqOpRmWtYLaH42twde1374n2fwKZYM/PxvUFUXLOPj7gIcRjNN7E3A/YB/A9ak+RlMxb8xzRSkVYC9gb8CTwS+N+pFZ3qNDdgceAbwGZopb8MOpBkd+iDN9+7fgO8neUJV/XiWrzXK+2muh0/TjHy+HNg/yalV9SvgfJqfzRcYPRVrRd0KOBz4Fc33baojfDOan8vXgW/RXI8Pplnb9ogkD6qq4RsiTwReQXMdf45mtPaNwD/ar5M22fppe/6naBKj29N87x4CfJfme/F7mtGUwWmEU9MH/4cmyfgR8EmakdF/B36T5JFVNXyz46nAq9tzP0WbFLYeADyZ5vt6YPu6H0hyJc0NmdNppvzevX2NA2n+DtF+PVN/E9Zrv+YTgTu134cjk2w+YlrynsBqNNfJxcApLL992/h3ZOk1XrvSXP/7D7U/mWba5j7AucBTaKZ8rk9zw2jqa1sP+A3NtbAfzd+Du9Nco49uv7aLViB2aeVSVb755ttK9gZsRbM2ZdTbicAmQ+c/sD32/hGv9U2ajsOt2+cfbs+94zJi2L/5EzSruA8DLm0f70WzZufm7fO30XRa16bp6BWw1cDHvq9te8XQa/572/4fA23vb9t2GTr3I237YQNtd6K50/ylEfF+lKbD/i9DX8PpM/ha70nTYfolcLOB9jvTJKGnA0tm+7oD558+zTWwxsA5h435uB2G2vdp2zcZaPtK2/bwoXO/3LbvvzzXWNs2FetjR5y/e3vsyKHv3V2BS4GTh86f7rV2HnEtTbX9buj179JegweNeP39h197lr+ru4/4XSjgP0d8TGh/L4baXzT8swM2aNsuAzYYeo0TgL8NtD1l1M9+xOfZYEzM27TtXwYy0L4ZzdrEX4x4jWuAe434HEXz+/GQgbabAX9r2/ceOn/q79I9h34/rwDuN3Tu+u31Nnh9Tv3MTwFusRw/x6mvZ/A1lwBnAkcNnXsLmr9th474+OuABw79nL7RHnvoQPu3aG4q3XXotTdvv9e7z/Zr8M23lfnNKXnSym1fmk7MNjR3LnejuWN8aJL1B857Hs0/5APSTKe64Y1mNOnWwMPac6fuWj5j1DSRDn2OZkTj6e3znYFvVdWFY85/Gs0d/+G7/J+mGVF72kDbU4H/o7kjPeiDI173mcDqwH4jvjffphldWWoa2AxsT9MZ2qMGRgOq6hyaZHN9mjvsK+J0bvz5D74tq8DBOVX1laG2qZGHu8MN6zueSNMZ/NXQuXuNeM3ZXGNT/lBLjxQN+u+h793ZNCMcm2TpSpDLeq1RPjH0+n+lGUHdeJavsyKWKqpQjSug+TkkWav9Pk79jIansgJ8s6pOH3wNmhHVdZNMFaGY+t1+wqhpZDMw9Tv2vvb1pz7XcTSjxo9Icoehj/luVY0rbvGbqjpy4HWuphmNDc2I5qBftO83BkgSmmvu58Bfh663y2hGix/H0j5ZI9YsLY9q1sd9Dnjw0JTEZ9L8bdtvxIf9qKqOHXiNAvZonz4Nbhg5exLN782VQ1/b6cCpjP7aJI3hlDxp5fanoU7id5IcTtNZ+CDwnLb9XjSdkP83zWut077/OE1n/xPAB5P8kmaK1UFVdX5XgVfViUl+C+yS5EyajtBrpvmQDYGjq+rawcaqujbJKTQjHFM2An7bdmgGz/1bkn8Ove5Ux3u6zvY60xybLl5oRvyGndC+3wg4ejlee8ply5EkAJw2om0qUZ1aI3MH4JaMnrI0qm0219iUP44860ajOtonte83Gjq+rNcaZdz3Yf0R7XPh/Kr656gDSXYA3kCTVK82dPi2Iz5kWT/TS6vq8CQH0tyceF77+/dj4MtVddKIjx+2Ic3oz6ifywk0fzc2pLmxMWW6n8uomP/Rvv/LmPbB63NtmsRh3N+l60e0Lc91Mp39gHfQjP69tm17Ec3o0CEjzl/WNQ3N6PQq7eu8aMznHfW9kzSGCZOkm6iqI5NcBDxmoDk0d/+fwPiKYSe2H39hkgfTrE/aBngUzXqG9yR5YlX9psNwP0eTmEGzPuaHHb52jWnPmOcvpJkONMrydE6GP89CMl3VuAy9H2XU93bG19iAZd3pH/d5RlmeUYNxcc7Xz25kzEmeTjPt7Siamwhn0UwbXUJz82LU7JKZ/Eypqp2SfIhm9PARNEnZ25O8tqo+vox4l+f7Mt3PZWzMwzc7RsQw9f7HjB45Xp54Zq2qzkryfeD5Sd5Ms57qUcCeVXXNqA+ZwctOfW1fZPx6vCtmHay0EjNhkjTKqjTTzKb8CXg8cOY002Nu0HZWDmvfSLIZcAzNndTtpk7rIM6DaNYmbE2z9mW6Tt9pwD2TrDo4ytROG7wHN01qTgPukWTJ4GsmuRNwm6HX/VP7/oLlHK0ZZ6pow71ZuoDDpgNxLlTn0UxtuueIY5uMaJvVNTZDmwLHDbVNjQgu5O/dinoBTYL06MHpY0lGfd9nrapOoBkR2qMtkHIkTbGFfQan2o3wZ2Bbmp/B8M9l6poeHhmaK+fTrAVcs+Pf2+WxL83fxady4zTbUdPx4Mbv06i2qWv6VJq/rzdbAF+btCi4hknSTSTZhmYq1TEDzV9o37+/XZsy/DF3HHi8VNU1mmlWVwC3G2i7tD3/diPOn5Fqqjy9DHgPS1eZGvZNmmk4Lx5qf0nb/o2Btm/RTP964dC5u4143a/QLPR/T5JRFfRuk2Yjz9k6hKbT86YkN0ypapO2XWgqlP1uOV53XrSJ5veALZI8fOjwG0Z8yIyvsVl4XZrNjKde4640+3Od0mFSNhOXctNrf65dR3Pt3PA/vl2z844VedEkt0tyk35DOyXwLzSFCpa1WfQ32/dvbeOZet370BSU+GWX03anU1XX06xn2yIjyta3cc1X+e3v0oyQ/xtNdb9fVdW4qanbJLlh+nD7fXxz+/Sb0Izy02xI/vQkDx1+gTSG14pJmoYjTNLK7YFJnt8+Xp1mNOMlNJWpbuhcVdVvk7ybJjH5fZKv0uzXdCfgQTTTc6Y6pp9pO6Y/pOnU3xx4Ns2i/cEiCkcArwQ+keS77ec8sqpmdYe5qoYLM4yzB/AsYJ+2w/E7mru5L6JZU7PH0LnPbb+WB9FMBduKpujATUpuV9XZSV4OfBY4OckXaL7uOwD3pblrvCnNYuvZfF2ntFOf3gz8PMmXubGs+K2A5y1jRG0heAfNiML3k3wcOJvmTvpUZ21w4f9srrGZWhX4RZKDaL53L6O5Hl+93F/R8jkCeGyaPYLOpFmr/79z+Pm+RlMi/aftmqPVaK7DW6zg676QJgn9Bs0oxjU05fa3Bb4yVWhinKr6UZKv0KyNvG2S73BjWfErmf+fy9uBhwNfaeM6gqbgyfo019sxNOu15lRVXZfk89z4N/dt05z+B5qf6z40U4C3pymV/oWh6c4vp6mw+fP2GvgdTQK9UfsxB9JUk5Q0AyZM0sptx/YNmgXOF9Lsj/JfVfXbwROr6r1JjqHp1LyWZhTqPJqpOYPFFr5A08nYiaZjfDHNouRnVtXg3k4H0SQsz6FJZFahGTmZkyk5VXVRO9LxHpq72bvQVML7FPDuavdgas/9R5JH0kz3eyHNmoDDaDaH/cmI1/58kj/SlDP/N2AtmsTqFJr9hM5dzph3S3Iqzb4wH6DpzB0JPLeqfjHtBy8AbdL3KJpKbq+h6RR/h6aDfBpD6yhmcY3N1AtpkqS30PxMjgN2rqofLcdrrYhX0JRdfztN4gYwZwlTVf1vklvT7Mm1J03Bg2/TfB/GVZGcicNofmefRJPIXkfz+/pGmmIvM/E8mj3QdqaplngZzV5S76yq41cgtlkb+JvwBpo9nLanKbl9Nk2y8dl5DOezNInSZcBXpznvEJq/K2+lme56HvAf7dsN2rVRD6IZFd8eeD7N799ZNNfCcJVLSdPI9NONJUnqVtuROxp4a1V9YA5ef3eazTw3HCyVLS1U7VTbs4D9qurfRhzfgCY5fU9V7T6/0UlyDZMkac4Mr+saWnMx3yM90kL1cpoqhsP7xElaAJySJ0maS79P8lPgeJopdk+mKTn/5ao6ZtqPlBa5JM+hKSX+JuAH/k5IC5MJkyRpLn2LJkl6Ac3/nL/QrOuazd430mJ1EM3aol8wfpNZST1zDZMkSZIkjeEaJkmSJEkaY6WYknf729++Nthgg77DkCRJkrRAHXPMMRdU1VIbO68UCdMGG2zA0Ucf3XcYkiRJkhaoJGeMandKniRJkiSNYcIkSZIkSWOYMEmSJEnSGCZMkiRJkjSGCZMkSZIkjWHCJEmSJEljmDBJkiRJ0hgmTJIkSZI0hgmTJEmSJI1hwiRJkiRJY5gwSZIkSQvAVlttxVZbbdV3GBpiwiRJkiRJY5gwSZIkSdIYJkySJEmSNIYJkyRJkiSNYcIkSZIkSWOYMEmSJEnSGCZMkiRJkjSGCZMkSZIkjWHCJEmSJEljmDBJkiRJ0hgmTJIkSZI0hgmTJEmSJI1hwiRJkiRJY5gwSZIkSdIYJkySJEmSNIYJkyRJkiSNYcIkSZIkSWOYMEmSJEnSGCZMkiRJkjSGCZMkSZIkjWHCJEmSJEljmDBJkiRJ0hgmTJIkSZI0hgmTJEmSJI1hwiRJkiRJY5gwSZIkSdIYJkySJEmSNIYJkyRJkiSNYcIkSZIkSWOYMEmSJEnSGAsqYUry+CSnJDk1yVvGnLNVkt8nOTHJ4fMdoyRJkqSVx6p9BzAlyRJgH2Ab4Gzgt0kOqaqTBs5ZC/gE8PiqOjPJHXsJVpIkSdJKYcEkTMAWwKlVdRpAkv8FtgdOGjjnucDBVXUmQFWdN+9RSpIkaV5t8Jbv9h3CvDj3tAuBlefrPf0D2/UdwowspCl5dwHOGnh+dts26B7AbZMcluSYJC8c92JJXprk6CRHn3/++XMQriRJkqTFbiElTBnRVkPPVwUeBGwHbAu8M8k9Rr1YVe1bVZtX1eZ3uMMduo1UkiRJ0kphIU3JOxu428DzuwLnjDjngqq6DLgsyc+B+wF/nJ8QJUmSJK1MFtII02+BjZNsmORmwHOAQ4bO+RbwyCSrJrkF8BDg5HmOU5IkSdJKYsGMMFXVtUleCfwAWAJ8rqpOTPKy9vinqurkJN8HjgOuBz5bVSf0F7UkSZKkxWzBJEwAVXUocOhQ26eGnn8I+NB8xiVJkiRp5bSQpuRJkiRJ0oJiwiRJkiRJY5gwSZIkSdIYJkySJEmSNIYJkyRJkiSNYcIkSZIkSWOYMEmSJEnSGCZMkiRJkjSGCZMkSZIkjWHCJEmSJEljmDBJkiRJ0hgmTJIkSZI0hgmTJEmSJI1hwiRJkiRJY5gwSZIkSdIYJkySJEmSNIYJkyRJkiSNYcIkSZIkSWOYMEmSJEnSGCZMkiRJkjSGCZMkSZIkjWHCJEmSJEljmDBJkiRJ0hgmTJIkSZI0hgmTJEmSJI1hwiRJkiRJY6zadwCSJEmSYN3nfqDvEDSCI0ySJEmSNIYJkyRJkiSNYcIkSZIkSWOYMEmSJEnSGCZMkiRJkjSGCZMkSZIkjWHCJEmSJEljmDBJkiRJ0hgmTJIkSZI0hgmTJEnSctpqq63Yaqut+g5D0hwyYZIkSZKkMUyYJEmSJGmMBZUwJXl8klOSnJrkLdOc9+Ak1yV55nzGJ0mSJGnlsmASpiRLgH2AJwCbAjsm2XTMeR8EfjC/EUqSJEla2SyYhAnYAji1qk6rqquB/wW2H3Heq4CvA+fNZ3CSJEmSVj4LKWG6C3DWwPOz27YbJLkL8DTgU/MYlyRJkqSV1EJKmDKirYaefwTYraquW+aLJS9NcnSSo88///wu4pMkSZK0kll1th+QZB3g/Kq6vuNYzgbuNvD8rsA5Q+dsDvxvEoDbA09Mcm1VfXP4xapqX2BfgM0333w48ZIkraSm9sw57LDDeo1DkjQZZjTClGS1JHskuQT4K7BB2/7BJK/oKJbfAhsn2TDJzYDnAIcMnlBVG1bVBlW1AfA14BWjkiVJkiRJ6sJMp+S9G3gy8HzgqoH2o4Cduwikqq4FXklT/e5k4CtVdWKSlyV5WRefQ9Jk2mqrrW4YFZAkSZpPM52StyOwa1UdnmRwKt4JwD26CqaqDgUOHWobWeChqnbu6vNKkiRJ0igzHWG6M3DGiPZVWY51UJIkSZI0CWaaMJ0IPGpE+w7AMd2FI0mSJEkLx0xHh94DfDHJ3YAlwLOSbAI8F9huroKTJEmSpD7NaISpqr5NM5r0OOB6miIQGwNPrqofz114kiRJktSfZY4wJVkNeB+wT1VtOfchSZIkSdLCsMwRpqq6BngFkLkPR5IkSZIWjpkWffgB8Ji5DESSJEmSFpqZFn34CfD+JJvRVMW7bPBgVR3cdWCSJEmS1LeZJkwfb9+/esSxoqmcJ0mSJEmLyowSpqqa6dQ9SZIkSVo0TIQkSZIkaYwZJ0xJtkvy8yQXJDk/yeFJnjiXwUmSJElSn2aUMCV5MfAN4M/AbsBbgL8A30iy69yFJ0mSJEn9mWnRh92A11fVxwfa9ktyDE3y9LnOI5MkSZKkns00YVoP+P6I9u8Be3YXjiRJWgw2eMt3+w5hXpx72oXAyvP1nv6B7foOQZp3M13DdCawzYj2xwFndBeOJEmSJC0cMx1h2hP4WJIHAr+m2XvpEcALgFfNUWySJEmS1KuZ7sP06STnAW8Ant42nwzsUFXfmqvgJEmSJKlPMx1hoqq+QVMpT5IkSZJWCjMtK75lki3HtD+q+7AkSZIkqX8zLfrw38BtR7Sv2R6TJEmSpEVnpgnTPYE/jGg/vj0mSZIkSYvOTBOmK4A7j2i/K3B1d+FIkiRJ0sIx04TpB8AHktwwLS/J7YD3t8ckSZIkadGZaZW8NwI/B05PclzbthlwHvCcuQhMkjS/NnjLd/sOYV6ce9qFwMrz9Z7+ge36DkGSJtpM92H6W5L7Ac8D7g8EOAD4UlVdPnfhSZIkSVJ/ZrMP0+XAZ+YwFkmSJElaUGa6D9MOSR438PxdSc5O8oMkd5q78CRJkiSpPzMt+rD71IMkDwTeBuwNrAbs1X1YkiRJktS/mU7JWx84pX38NOCbVbVHkh9ilTypNyvLonUX6UuSpL7MdITpSuDW7eOtgR+3jy8aaJckSZKkRWWmI0y/APZK8ktgc+CZbfs9gLPmIjBJkiRJ6ttMR5heCVxNkyi9rKrOadufgFPyJEmSJC1SM92H6WzgySPaX9t1QJIkSZK0UMx0hEmSJEmSVjomTJIkSZI0hgmTJEmSJI1hwiRJkiRJY5gwSZIkSdIYM92HiSQPodm09o4MJVpV9eqO45IkSZKk3s1ohCnJG4HfADsD9wfuO/B2n66CSfL4JKckOTXJW0Ycf16S49q3Xye5X1efW5IkSZKGzXSE6TXAq6vq43MVSJIlwD7ANsDZwG+THFJVJw2c9hdgy6r6R5InAPsCD5mrmCRJkqaz7nM/0HcIkubYTNcwrQkcOpeBAFsAp1bVaVV1NfC/wPaDJ1TVr6vqH+3TI4C7znFMkiRJklZiM02YDgIeP5eBAHcBzhp4fnbbNs6LgO+NO5jkpUmOTnL0+eef31GIkiRJklYmM52SdxbwniQPB44Drhk8WFUf7iCWjGirkScmj6ZJmB4x7sWqal+aKXtsvvnmI19HkiRJkqYz04TpxcClwL+2b4MK6CJhOhu428DzuwLnDJ+UZDPgs8ATqurCDj6vJEmSJI00o4Spqjac60CA3wIbJ9kQ+CvwHOC5gyckWQ84GHhBVf1xHmKSJEmStBKb8T5Mc62qrk3ySuAHwBLgc1V1YpKXtcc/BbwLWBv4RBKAa6tq875iliRJkrS4zWbj2nsAzwTWA242eKyqdu0imKo6lKFqfG2iNPX4xTTTAyVJkiRpzs0oYUqyHfB14HfAg2imz/0LsDrwizmLTpIkSZJ6NNOy4u8F3lNVDwOuAl4AbAD8GDhsTiKTJEmSpJ7NNGG6J/Dl9vE1wC2q6kqaROq1cxCXJEmSJPVupmuYLgHWaB//Dbg7cEL78bedg7gkSZoT6z73A32HIEmaIDNNmI6k2ST2JOC7wF5J7gc8DfjNHMUmSZIkSb2aacL0euBW7ePdgVsDzwD+2B6TJEmSpEVnphvXnjbw+HLg5XMWkSRJkiQtEDMt+kCSNZI8M8luSdZq2/4lye3mLDpNrK222oqtttqq7zAkSZKkFTLTfZjuTlNC/FbAWsBXgX/SjDSthZvJSpIkSVqEZjrC9BHgh8A6wBUD7YcAj+44JkmSJElaEGZa9OFfgYdW1XVJBtvPBO7ceVSSNMAy0JIkqS8zXsMErDaibT3goo5ikSRJkqQFZaYJ0w+5afnwSrIm8B6afZkkSZIkadGZzT5MP0tyCrAG8GXg7sD/ATvMUWySJEmS1KuZ7sN0TpL7AzsCD6QZmdoX+J+qumK6j5UkSZKkSTXTESbaxOhz7ZskSZIkLXozTpiSrEtTLe+ODK19qqpPdByXJEmSJPVuphvXPh/4LBDgH0ANHC7AhEmSJEnSojPTEab3AXsA762qa+cwHkmSJElaMGZaVnxNYH+TJUmSJEkrk5kmTP8DbDeXgUiSJEnSQjObfZi+mWRr4HjgmsGDVfXergOTJEmSpL7NNGH6N+DxwAU0G9YOF30wYZIkSZK06Mw0YXon8Iaq+u+5DEaSJEmSFpKZrmFaAhwyl4FIkiRJ0kIz04Tp88Dz5jIQSZIkSVpoZjol7xbAi5NsCxzH0kUfXt11YJIkSZLUt5kmTPcCftc+3mToWCFJkiRJi9CMEqaqevRcByJJkiRJC81M1zBJkiRJ0krHhEmSJEmSxjBhkiRJkqQxTJgkSZIkaQwTJkmSJEkaw4RJkiRJksYwYZIkSZKkMUyYJEmSJGkMEyZJkiRJGsOESZIkSZLGMGGSJEmSpDEWVMKU5PFJTklyapK3jDieJHu3x49L8sA+4pQkSZK0clgwCVOSJcA+wBOATYEdk2w6dNoTgI3bt5cCn5zXICVJkiStVBZMwgRsAZxaVadV1dXA/wLbD52zPXBgNY4A1kpyp/kOVJIkSdLKYdW+AxhwF+CsgednAw+ZwTl3Af42/GJJXkozCsV6663XaaArYoO3fLfvEObFuaddCKw8X+/pH9hupfq8Wpy8ntQlryd1yetJfVpII0wZ0VbLcU7TWLVvVW1eVZvf4Q53WOHgJEmSJK18FlLCdDZwt4HndwXOWY5zJEmSJKkTCylh+i2wcZINk9wMeA5wyNA5hwAvbKvlPRS4qKqWmo4nSZIkSV1YMGuYquraJK8EfgAsAT5XVScmeVl7/FPAocATgVOBy4Fd+opXkiRJ0uK3YBImgKo6lCYpGmz71MDjAv59vuOSJEmStHJaSFPyJEmSJGlBMWGSJEmSpDFMmCRJkiRpDBMmSZIkSRrDhEmSJEmSxjBhkiRJkqQxTJgkSZIkaQwTJkmSJEkaw4RJkiRJksYwYZIkSZKkMVbtO4CVzekf2K7vEObFVkd8CIDDVpKvV5IkSYuTI0ySJEmSNIYJkyRJkiSNYcIkSZIkSWOYMEmSJEnSGCZMkiRJkjSGCZMkSZIkjWHCJEmSJEljmDBJkiRJ0hgmTJIkSZI0hgmTJEmSJI1hwiRJkiRJY5gwSZIkSdIYJkySJEmSNIYJkyRJkiSNYcIkSZIkSWOYMEmSJEnSGCZMkiRJkjSGCZMkSZIkjWHCJEmSJEljmDBJkiRJ0hgmTJIkSZI0hgmTJEmSJI1hwiRJkiRJY5gwSZIkSdIYJkySJEmSNIYJkyRJkiSNYcIkSZIkSWOYMEmSJEnSGAsiYUpyuyQ/SvKn9v1tR5xztyQ/S3JykhOTvKaPWCVJkiStPBZEwgS8BfhJVW0M/KR9Puxa4A1VdS/gocC/J9l0HmOUJEmStJJZKAnT9sAB7eMDgKcOn1BVf6uqY9vHlwAnA3eZrwAlSZIkrXwWSsK0TlX9DZrECLjjdCcn2QB4AHDk3IcmSZIkaWW16nx9oiQ/BtYdcejts3ydWwFfB15bVRdPc95LgZcCrLfeerP5FJIkSZIEzGPCVFWPHXcsyf8luVNV/S3JnYDzxpy3Gk2y9D9VdfAyPt++wL4Am2++eS1/5JIkSZJWVgtlSt4hwE7t452Abw2fkCTAfsDJVfXheYxNkiRJ0kpqoSRMHwC2SfInYJv2OUnunOTQ9pyHAy8AHpPk9+3bE/sJV5IkSdLKYN6m5E2nqi4Eth7Rfg7wxPbxL4HMc2iSJEmSVmILZYRJkiRJkhYcEyZJkiRJGsOESZIkSZLGMGGSJEmSpDFMmCRJkiRpDBMmSZIkSRrDhEmSJEmSxjBhkiRJkqQxTJgkSZIkaQwTJkmSJEkaw4RJkiRJksYwYZIkSZKkMUyYJEmSJGmMVfsOQIvTYYcd1ncIkiRJ0gpzhEmSJEmSxjBhkiRJkqQxTJgkSZIkaQwTJkmSJEkaw4RJkiRJksYwYZIkSZKkMUyYJEmSJGkMEyZJkiRJGsOESZIkSZLGMGGSJEmSpDFMmCRJkiRpjFRV3zHMuSTnA2f0HcdK6PbABX0HoUXD60ld8npSl7ye1CWvp/6sX1V3GG5cKRIm9SPJ0VW1ed9xaHHwelKXvJ7UJa8ndcnraeFxSp4kSZIkjWHCJEmSJEljmDBpLu3bdwBaVLye1CWvJ3XJ60ld8npaYFzDJEmSJEljOMIkSZIkSWOYMEmSJEnSGCZMkiRJkjSGCZMkSZIkjbFq3wFIkjQfkqwCrFFVl/cdiyZbkg2BDYCbA+cDx1fVlb0GJWnOWCVP0oJmx0QrIskTgB2BLYG7AAGuBI4Fvg98vqrO6S9CTYokGwAvp7mepq6lKVcDv6ApB/31qrp+3gPUREuyOnBn2v91VXV+zyFpgAmTOpVkI5qOyQbc2ME9FviVnVzNlB0TragkTwX2AG4NHAocBZwDXAHcDrgP8EjgYcD+wDvtoGicJB8FdgZ+CBzC+OtpR+BaYJeq+m0vwWpiJLk18Hya62YLYDWa/3dFc319H9jXa6l/JkzqRJLnAa8BNgf+j5v+I/kXmju6/wN8sKrO6CtOLXx2TNSFJEcC/wEcOl1SneQuNH+7/q+q9pqv+DRZknyI5v/XBTM494nALarqa3MfmSZVktcB7wBOY/r/dU8DjgBeVVV/6idamTBphSX5HU3HdX/gkKo6a+j46jR3cZ8DPAN4RVV9db7j1GSwYyJJWuySfBV4T1WdsIzzVgdeBFxdVZ+dl+C0FBMmrbAk21XVd2d47u2BDR0RkCRJ0iSwrLhW2EyTpfbcC0yWJM21JO9IcssZnvvwJE+e65g0uZL8OMkjZnDeWknenuRV8xGXFqckGyexkvUC4g9DKyzJravqkrk6XyuXJD8Gdq+qXy7jvLWAfwcurqqPzUdsmih3B85M8nWa9QFHV9W5AEnWADYFHkGz4HptYKe+AtVE+CJwUJIraK8n4G8063Nvy43X0+OBbwJv7idMLRInAvcDTu47EDWckqcVluRc4OPA/lV19phzVgG2BV4P/KSqPjCPIWqCJNmZZrH+jDsm4647rdyS3Bd4JbADsCZN5alrgJvRVKI6lqba4v5VdXVfcWoyJFkNeBZNwZlHALdpDxVwEvAD4DNVdUo/EWrSJDlkzKHtgJ8DlwBU1VPmLSiNZMKkFZZkY+B9wFOB4xjdwX0oTQf4/TT/UCwFrbHsmKhL7Q2bzYD1abY7uAD4/UwKi0jjJLkNzfV0YVVd03c8mjxJrqdJjP4ydOiFNDcM/wlQVbvMb2QaZsKkziS5G/Bsmg7uYMfkdzQd3GnL+0rj2DHR8mrXAbwU+KYb1GpFtTdzvgi8rar+3Hc8mmxJdqTZL+5tVfWFgfZrgPtV1Um9BaebMGGStCDZMVFXklwGbOoecOpCkn8AD6qq0/qORZMvyUbAl2j2Y3pZVV1swrTwWCVPnUmyWpJzk9y771g0+dqRpMfRTMOTVsQRwIP6DkKLxsHA0/sOQotDm3g/Ajgb+EOSR+H/vQXHKnnqTFVd094V8RddXZnqmOzZdyCaaJ8B9kyyHnAMcNngwao6tpeoNKnOBN6R5JE0a3aHr6cP9xKVJlZVXQu8ua0SexCwpOeQNMQpeepUkjcD9wV2af8ASMstybuB1wGHY8dEy6ldWD1OVZWdE81YkuEF+oOqqjaat2C06CRZG7gPcFRVXdF3PGqYMKlTSb4NbElTEe8Elu7gWhpTM2bHRF1Isv50x13bJEmajlPy1LULgK/3HYQWh6rasO8YNPlMiDRXkqwDnG8FWC2vJA+n2ZblH8AXquqsgWO3Bb5eVY/pKTy1HGGSNBHsmGhFJHkC8O/ARsC2VXVWkhcDf6mqn/QbnSZJW8HzfcDLabY7uEdVnZbkg8AZVfWJXgPUxEjyZOAbNGsrbw3cBXhuVX23Pb4OcI7ThvtnlTzNiSSbJ3l2klu2z2/Z7ocizVhbeXGPJJcAfwU2aNs/mOQVvQaniZHkecBXgD8BGwKrtYeWAG/uKy5NrHcDTwaeD1w10H4UsHMfAWlivR14b1U9pKo2Bd4GfDnJ03qOS0NMmNSpJOskOZLmH8eXgHXaQx8G9uotME0qOybqwpuBl1TV64DBYjRHAPfvJSJNsh1p9sv5FjA44n0CcI9+QtKE2pRmv0EAqmofYCfgi0me0VtUWooJk7r238C5wNrA5QPtX6XZU0eaDTsm6sLGwG9GtF8KrDnPsWjy3RkYtS5uVVwbrtm5ErjdYENVfR14IXAgsEMfQWlp/mKra1sDW1fVP5IMtv8ZWK+fkDTB7JioC+fQJNjD19KjaP42SbNxIs21c/pQ+w40a1Gkmfod8BiabTNuUFVfT7KEgdEn9csOh7p2c+DqEe13oLmTIs2GHRN1YV9g77bIA8Dd2k1H9wB27y0qTar30EyZuhvNOrhnJdkEeC6wXa+RadJ8imYrlqVU1VeSrAL82/yGpFGskqdOJfkOcFxVva1dqL8Zza7oXwGuqyqHlzVjbQWhL9J0bN9O01G5oWNSVT/uMTxNkCTvo9kEeY226Spgz6p6Z39RaVIl2ZZmgf6DaJY3HEuzeP+HvQYmaU6YMKlTSTYFDgd+T3PX5DvAvYHbAA+vKqe/aFbsmKgrSW5Bs8h6FeCkqrq055AkCbhhg+11gQL+z/3jFhYTJnUuybo0+1MMdnD3qaq/9RqYJEkdSrIGQwW0quryMadLS0nyOuD1NGt2pxZ/F83ay72q6iM9haYBJkySJoIdEy2vJKsDrwAeDdyRpa+jLfqIS5OpHQnYm+Z6uuXwcTcZ1UwleSfwJuCDwA+A/6NJmu5IU1l4N+BDVfWfvQUpwIRJcyDJzYD7MLpjcmgvQWki2TFRF5IcCDwJ+BZNh+Qm//iq6q19xKXJlOQXNGvhPs7o6+kHfcSlyZPkLODVVfWNMcefDnysqu4yv5FpmFXy1Kkk2wBfoEmWhhVNRSFppr5I0zF5FSM6JtIMPQXYvqoO7zsQLQoPAB5cVSf3HYgm3trA/5vm+CnAbecpFk3DhEld24em0MN/YAdXK86OibpwHnBB30Fo0fgDzVYZ/l3SijoKeFeSnarqJluytLN13t6eo545JU+dakuJ36+qTus7Fk2+JL8C3lpVP+87Fk2uJM8EXgDsXFX/6DseTbYk96aZKrw3cAJwzeDxqjqzj7g0eZLcB/gRzR6Wv+DGG83rAo8ELge2qaoTewtSgAmTOpbkIOC7VeXu1FphdkzUhSRrAl+jWQt3LktfRxv1EZcmU5L7Al+i2TJjsBMVoFxbqdlIcmvg+cBDaRIlaP5O/Qb4UlVd3FdsupEJkzqV5DbA/wB/YnQH98A+4tJksmOiLiT5JvBgmmtp1CL9vXoISxMqybHAP4G9GH09HdNDWJLmkAmTOpVkB+AAYHWaoeTBC6yqas1eAtNEsmOiLiS5DHhMVR3ZdyyafEkuB+5fVX/sOxYtbklWA+7kbIr+WfRBXduTptTq7lV1Wd/BaOJtgh0Trbgzgav6DkKLxlHAhoB/lzTXNgWOxQrDvTNhUtfWAj5lsqSO2DFRF14H7JHkFVV1at/BaOJ9EvhIkr2A41l66vmxvUQlac44JU+dSvJ54Iiq+nTfsWjyJXk2sDvNlDw7JloubfXO1Wnu0l4FXDt43KnCmo0k109z2LWVmrEky6oofDOaKXleUz1zhEldOw14X5JHAcexdAf3w71EpUl1UPt+3xHH3AhZM/XKvgPQorJh3wFo0bgTcCDjZ1HcBXjN/IWjcRxhUqeS/GWaw2X5Xs1GkvWnO15VZ8xXLJpM7aLpLwJvq6o/9x2PJlt7PZ0FbO3eOFpRSX4L7F9V+4w5fj/gWEeY+ucIkzqTZBXgScAZVXVp3/FosrUdkyOxY6IVUFXXJHkc8Na+Y9Hka6+naxiq2Cktp18B95jm+KWAG7cvAI4wqTNJQrM+YFMXVqsLSc4Ctq2qk/qORZMryX7AyVW1Z9+xaPIleTNwX2CXqrp2WedLmnyOMKkzVVVJTgHuAJgwqQsfA96axI6JVsSZwDuSPBI4GrhJFU/XVmqWHglsCfw1yQksfT09pZeoJM0ZR5jUqSRPAN5Os8j6D+UFphWQ5Ns0HZMrADsmWi6urVSX2mqwY1XVLvMVi6T5YcKkTrXle9cAVqEp3XuTzSIt36vZsGMiSVoZJLmYZqP20wYf9x2XGk7JU9cs36vOmBCpa0luRTOq5ObaWiFJNgI2pSkAcbKdW62gjHmsBcCESZ2qqgP6jkGLjx0Tragk/w7sRrOvCUnOBj5YVZ/oNTBNnCRrAvsBzwCuv7E5XwdeVFWX9BacpDlhwqTOJVkdeB43dnBPBA6qqqum/UBpiB0TdSHJ22jKiu8J/LJtfiTwgSRrVtUHegtOk+ijwGbAo4Fft20PBz4FfAR4UT9hSZorrmFSp5JsCnwfWBM4vm2+L3AR8PiqOrmv2DR52jVM/wq8lKU7Jr+qKjsmWqYkZwK7VdVBQ+3PA95fVdNukCwNSnIh8NSq+sVQ+6OAb1TV2v1EpknWrgG/X7uG6YbHfcelxip9B6BF56PA74D1quqRVfVIYD3gDzR33qTZeArw4qo6vKquad8Oo0mgntprZJokdwR+O6L9KGCdeY5Fk+/mwIUj2v9OU/RI0iJjwqSuPRx4W1VdPNXQPn478IjeotKksmOiLvwReO6I9ucCp8xzLJp8vwL+I8ktphqS3BJ4DzeOhEtaRFzDpK5dCaw1ov027TFpNqY6Ji+oqsvBjomWy+7AV9opU7+iWVv5CJo9vp7VY1yaTK8Hvkezce1xNNfT/Wj2idu2z8AkzQ0TJnXt28BnkrwEOKJtexjwaeCQ3qLSpLJjohVWVQcneQjwOuBJNCV7TwK2qKrf9RqcJk5VHZ9kY+D5wCY019MXgf+pqit6DU6T7Bc0m7QPP9YCYNEHdSrJWsABwJOB69rmVWiSpZ2r6qKeQtOESnJzbtoxOQk7JlqGJJ8DXlNVl7QjS7+uqmv7jkuTKclpwIOr6sIk7wL2nBr1lrT4mTBphSVZDzirBi6mJHcH7kXbwa2qU/uKT5PFjom6kORqmuIz5ya5DrhTVZ3Xd1yaTEmuAO5RVWd5PWk+JFmtqq7pOw41TJi0wgb/eST5KfD0qvpnz2FpQtkxUReS/BH4KvBD4GfA04B/jDq3qn4+j6FpAiX5Nc1U4F8C76bZ0+vSUedW1XvnMTQtAkleDfy1qr7ePt8P2An4M/CUqrI4Tc9MmLTCkvwT+NeqOinJ9cA6VXV+z2FpQtkxUReSbA98Brg9zdq3jDm1qmrJvAWmiZTknsB/Anen2bT2j8CoKZ5VVZvNZ2yafElOBXatqp+3U4i/S7MB8jOAW1bVk3oNUCZMWnFJvkZTcepkmqpTvwauHnVuVT1mHkPTBLJjoi616yr/DtwbGDlSWVWjStdLI7U3Btd15FtdaWdW3LOqzkzyIWDtqto1yb2AX1TV7XsOcaVnlTx14QXArjQd3C1p9jVxzYmWSzv14FlwQ8dkSzsmWl5V9c8kjwb+ZNEHdaGq3MNSXbsYuANwJrAN8KG2/Rrcc3BBMGHSCmurle0DkOT+wBtcw6Qu2DFRR84H/oV2k9ok29CsDzgR2KOqrpvmY6WbSLID8M+q+mH7/F3AS2mup52r6m99xqeJ9EOaLVl+R3Pz+Xtt+72Bv/QWlW5gZ0SdqqpHDydLSe6exDskmrUkOyR53MDzdyU5O8kPktypz9g0UfYDHgCQ5K7At4DbAf9OM/1Tmo3dpx4keSDwNmBvYDVgr55i0mT7d5pNtW8PPLOq/t62PxA4qLeodAPXMKlTSd4PnFJVByQJzV2TrYGLgCdU1RHTvoA0IMlJwGur6odtx+TXwLuAxwPnVtVzew1QE6EtTLNFVf0xyetoqk49up2q9/mq2qDXADVRklwGbFpVZyT5D2DjqnpOO8PiB1W1Tr8RSuqaI0zq2vNop70ATwDuDzwUOBD4r55i0uRanxuvp6cB36yqPYDX0yTi0kws4cZCNFsDh7aP/wzYudVsXQncun28NfDj9vFFA+3SjCW5LskdR7Sv3W6voZ65hkldWwc4u338ROArVXVUkr8DR/cXlibUcMfkc+1jOyaajROAlyf5Ds119Na2/S7ABb1FpUn1C2CvJL8ENgee2bbfAzirt6g0ycZte7A6Y6oOa36ZMKlrF9KMCpwNPI4bOyarMv4PgjSOHRN1YTfgm8AbgQOq6vi2/SnAUX0FpYn1SuCTNH+PXlZV57TtTwB+0FtUmjhJXt8+LOBlSQb3HFwCPBL4f/MemJbiGiZ1KsnewPY0e+c8AFi/qi5L8hzgTVX1oF4D1ERpF+h/ElgP+GhVfa5t/wiwSlW9usfwNEGSLAHWrKp/DLRtAFxu2XpJfUgyVQFv6kbz4PS7q4HTgXdV1ZHzHJqGmDCpU0lWBV5D08Hdv6p+17a/Drikqj7bZ3ySJHWl3Rj5JuvBByqcSTOS5GfA0wdv6GhhMWGSNBHsmGh5tdsavIZm/dIdWfo62qyPuDSZkqwPfAp4NE0p8RsOAVVVS3oJTNKccQ2TOpfkFjTV8YY7JlVV3+glKE2kZXVMaOZ4S8vyCZoqi1+lKU3vnUKtiM8DawG7Aufg9aTl0C5heGu7bGHv6c51+nn/TJjUqSSPpdlkbe0Rh+3garbsmKgLTwWeVVU/XtaJ0gxsATy0qk7oOxBNtPty443A+05znv/3FgCn5KlTSU4Efgu8baBykLRc2opBdky0QpKcDWxdVacs82RpGZIcD+xcVcf0HYuk+eHGteraBsB/mCypI3+h2YdCWhF7AK9P4v88deE1wH8luXvfgUiaH44wqVNJfgh8pKoO7TsWTb4kjwHeAryiqk7tOx5NpiTfptnP5CLgJOCaweNV9ZQ+4tJkSnIJzY2cJcBVwLWDx6tqzT7i0mRqt8+4N/CHqjo3yeNp9rC8Bc3+ce8vO+u9cw2TuvYpYM8kdwaOZ+mOybG9RKVJ9S2ajskpSeyYaHldAFhwRl15Zd8BaHFI8kTgYOBmwBVJdgH2Bw4HLgF2p/m/98GeQlTLESZ1Ksn10xy23KpmJclO0x2vqgPmKxZJkrqU5Eiayp3voClu9F/AO6rqI+3xlwKvq6p79RakABMmdawtAz1WVZ0xX7FIkjSXkqxLMzpwg6o6s6dwNGGSXAw8sKpOTTI1xfP+U4WOkmwAnFRVt+gxTOGUPHXMhEhzxY6JVkQ71WVHYD2Wvo426iUoTaQktwH2BnZg6FpqOZNCM3Ur4GKAqrouyRXA5QPHr8DCRwuCCZM6l2RVmn0qRnVMDuwlKE0kOybqQpI30Syi/jTwKJqNbO/ePt6zx9A0mfYE7kezv9fBNFOp7kJTPe8N/YWlCVTcdJ+l4edaIJySp04l2QT4NrAhEOA6msT8GuAqF+lrNpJ8BngwsBsjOiZV9bUew9OESPJHmr3hvtZWOLtfVZ2W5J3AelX1kp5D1ARp9/Xasap+MTSlakdg16rapucQNSHadd+XcWOSdKuh5wFu4frv/jnCpK59BDgGuD9wbvv+NsAnaRY1SrPxBG7smFwHHFNVX07yN+DfABMmzcRdgaPax1cAUzduDmrbTZg0G2sBU9PPLwLWBk4FfgN8tqeYNJl26TsAzYwJk7r2YGDLqrqsvXOyalUdm+TNwMeAzfoNTxNmLeyYaMWdC9weOJPmenoY8HuaaXlOs9Bs/RnYiOZ6Ohl4TpKjgKcDf+8zME0WK71ODnc9V9fCjQsWz6eZPgVwNk3nRJqNqY4J3NgxCXZMNDs/BaY2p90P+HCSnwFfppnqKc3G/tx48+8DNKPdVwMfwv1ytIKSrJXkdoNvfcck1zCpY0l+Dvx3VX0jyZdoRgTeTzPlZbOqcoRJM5bkdcB1VbV3kscA3wFWo7nZ85qq+nivAWoiJFkFWKWqrm2fPxt4OPBH4NNVdc10Hy9NJ8l6wObAn6rq+L7j0eRpt2T5FPBomv9xNxzCPSwXBBMmdSrJtsAtq+rgJBvRdHA3AS4Adqiqw/qMT5PNjolmK8lqwPuAfdz2QCuqvZ5+Cbywqk7pOx4tDkl+SjMFfU/gHIamClfV4T2EpQEmTOpUklvQVMO7bqDtdsA/yotNs2DHRF1Jcilwn6o6ve9YNPmSnAc8oqr+2HcsWhzav1EPndqwVguPa5jUmXaX6ouAew62V9XfTZY0W+00qQ1xUb5W3A+Ax/QdhBaNA7Cyorr1F9ygdkGzSp460+5SfQajNxiVlsdUx+RNfQeiifYT4P1JNqPZ9uCywYNVZeEHzcYtgecl2YbR19Ore4lKk+w1wH8leUVVndp3MFqaU/LUqSQ7ATsCz6+qC/qOR5MtySeA59HcfbNjollp1wU8A7hwmtNcUK0ZafeCuxNNdcVxqqoczdSstBtqrw4sAa4Crh08XlVrjvo4zR8TJnUiyaNo9sY5lmYa1Wo0pcSHO7hWydMy2TFRF9q94NatqvP6jkWTz+tJc6W92TyW+zX1zyl56srPaDq4X+s7EC0KAaiqR/cdiCRJc8mEaOEzYVJXpjq47+k7EEkacNcka0x3QlWdOV/BaOLtkOTi6U6oqgPnKxhNriS3rqpL5up8dcspeepEO1Vhnao6v+9YNPna6+nVgB0TLbf2Oprun5ybQmrG2uvpcqa/psr1JpqJJOcCHwf2r6qzx5yzCrAt8HrgJ1X1gXkMUQNMmNSJ9h/Jl4Erpjuvqnadn4g0yeyYqAvtdfR4pi/6QFUdMz8RaZK5hkldSrIxzabaTwWOA44G/gZcCdwW2BR4KE2/6v3AZ6rq+l6ClQmTutH+I/kxTXWXsarqyfMTkSaZHRN1wetIXZoqRuP1pC4luRvwbOARwPrAzYELgN/R7CF3qIlS/0yY1Ak7JuqSHRN1wb9L6pLXk7TyWqXvALRomHmrS+k7AC0KZwDX9R2EFo0DWMa0c2m2kqyW5Nwk9+47Fo1nwqSu2MFVl+yYaIVV1YZVdWGSnyZZa/h4kjXbzW2lZaqqXarqkiTXJbnj8PEka7ej49KMVdU1wDV443lBM2FSV3YBLkryqCRLlatPsmq7ua20THZM1LGtgJuNaF8DeOT8hqJFYNwNwtWBq+czEC0aHwPeOqr/pIXBH4w6MbXpWpKpDWyH53jfhmZzW8v3ajbsmGi5JXngwNPNkvx94PkSmnK9f53fqDSpkry+fVjAy5JcOnB4CU3y/f/mPTAtBo8EtgT+muQE4LLBg1X1lF6i0g1MmNS1MHpYeW2G/gBI49gxUUeOprmGCvjhiONXAK+a14g0yaaulQAv5qbr464GTgdeNs8xaXG4APh630FoPKvkqRNJDmkfbsfS5cWXAPcBTq6qx893bJo8Sf7SPlwfOJvRHZN3VdWR8xyaJkiS9Wk6t6cBWwCDG2tfDZxXVU7t1Ky0MymeXlX/6DsWSfPDESZ1ZWpjyAD/4KYL9q8Gfgl8Zr6D0mSqqg3BjolWTFWd0T50va46U1WP7jsGLU5JNgf+BfhOVV2W5JbAVVV1bc+hrfQcYVKnkrwb2LOqnH4nacFoN4d8JHBHhhKoqvpwL0FpYiV5NrA1o68n15toVpKsAxwCPJhmCvHGVXVakk8DV1bVa3oNUI4wqVtV9Z6+Y9DiYsdEKyrJ84DPAdfSTMsbvFNYgAmTZizJh4DX0hQyOgfLQWvF/TdwLs167zMH2r9KU0FPPTNhUqeS3A54H+M7uGv2EZcmkx0TdeS9wF7AO12zpA68ENixqr7WdyBaNLYGtq6qfyQ3KQ77Z2C9fkLSIBMmdW0/4AHAvtjB1YqzY6IurAN81mRJHVkF+H3fQWhRuTmjt8q4A3DlPMeiEUyY1LWtgW2sXqaO2DFRFw4FHkJTLU9aUfsCzwd27zkOLR4/B3YG3tY+ryRLgN2An/QVlG5kwqSunQdcusyzpJmxY6Iu/Aj4YJJ7A8cD1wwerKqDe4lKk2ot4LlJtgGOY+nr6dV9BKWJ9mbg8CQPptmYfS/g3sBtgIf3GZgaVslTp9oF+jsAO1WViZNWSJJ9gOcCJ2HHRMspyfXTHK6qWjJvwWjitdsdjFNV9Zh5C0aLRpJ1gZcDD6KZXXEssE9V/a3XwASYMKljSY4HNqDZrPYMlu7gbtZDWJpQdkwkSVLfnJKnrrk4X51xg0hJ0sogyc2A+zC6wvChvQSlGzjCJEladJK8HvhEVV3ZPh7LjWu1LEkOAZ5fVRe3j8dyfzjNVrse7gs0ydIwpw0vAI4wSVpQ7JioI68CDqApyfuqac5z41rNxIXcuE3G33HLDHVrH+A7wH8A/4fX14JjwqQVluRiYKOquiDJJUzzi+7GtZoBOyZaYVW14ajH0vKoql0Gnr4CuMp9vdShOwHvr6oz+g5Eo5kwqQuvAi5pH7+yz0A0+eyYqEtJVgN+Cbywqk7pOx5NtnZvnIuA+9FU75S68B3gX3GvuAXLhEkrrKoOAEiyKnA+cGRVXdhvVJp0dkzUhaq6JsmGOFKpDlTVdUnOAG7WdyxaVF4G/E+SBwEnsHSF4QN7iUo3sOiDOpXkSmCTqjq971g0+ZKcCjyzqn7fdyyaXEk+BFBVb+o7Fk2+JDsBO9Kstbyg73g0+ZLsQLPmcnXgcm56g6dcztA/EyZ1KsmRwNur6sd9x6LJZ8dEXUjyCeB5wF+AY4DLBo+7AbJmo91vcENgNeBslr6e3G9Qs5LkTODLwO5Vddmyztf8c0qeurY7sFeSdzO6Y/L3PoLSxHojTcfkr0nsmGh53Qs4tn280dAx7xpqttxvUF1bC/iUydLC5QiTOpXk+oGngxdXcC8BzVKbeI9VVe+Zr1gkSZoLST4PHFFVn+47Fo3mCJO69ui+A9DiYUKkLiW5OfAv7dM/V9UVfcajyZbkMcCm7dOTquqnfcajiXYa8L4kjwKOY+miD+4V1zNHmCQteHZMtCKSrA58EPg3mupmAa4C9gV2q6orewxPE6atungwcF/gnLb5zsDxwDOqytLQmpUkf5nmcFXV8FRizTMTJnUuyZ2Al3NjB/dk4JNVdc74j5KWZsdEXUjyOeBxwG7Ab9rmhwH/Bfy4qnbtKzZNniQ/BZYAL6iqM9u29WiqnFVVPabP+DRZkqxCs87yjKq6tO94NJoJkzqVZBvgW8BZwJFt8xbAesBTq+qHfcWmyWPHRF1Icgnw9Kr60VD7NsDXLdmr2UhyBfDQqvrDUPv9gd9U1c17CUwTKcnUiPemVXVq3/FoNNcwqWt7A58FXlMD2XiSjwIfpbmLIs3Uw2g6JmdONVTVmUlex40jBdKyXAb8dUT7XwHXMWm2zgRGJUVr0NwslGasqirJKcAdABOmBWqVvgPQorMB8PFaeuhyH2D9+Q9HE86OibrwMeDdbdEH4IYCEO9sj0mz8QZg7yQPTbKkfXso8JH2mDRbbwY+lOT+7YiTFhin5KlTSX4BfKSqvj7U/gzg9VX18H4i0yRK8iTgXcCrgd+2zQ+m6Zi8r6q+3VNomiBJvg1sCVxLU4EKmnVxqwKHD55bVU+Z3+g0adopnqvTTBee2kpjFeA64CYFRJzuqZlor6k1aK6ja2mm6N3A66h/TslT1z4B/HeSjYEj2raH0hSBeEuSB06dWFXHjvh4adBBNB2TX7F0x+R/Bm/E+Q9F07gA+PpQ23RVqaTpvLLvALToeE0tcI4wqVNDG9dOx01stUxJdprpuVV1wFzGosnUVqDaBDjTClRaUUlWBV4KfNPKr9LKw4RJnUoy43VKVXXGXMaiyWbHRF2wApW6luQymuvJ/2HqTLtf3PNotmQp4ETgoKq6atoP1LwwYVJnkqwGfBF4W1X9ue94NPnsmKgLSY4HXlpVVlbUCkvyE2Cfqjq471i0OCTZFPg+sCbNPoPQrLO8CHh8VZ3cV2xqmDCpU0n+ATzIDUXVBTsm6kKSJwBvp1kn8IcRVTylGUvyHOD9NNtoHENTtv4Grs/VbCX5EXA5zZ6DF7dta9LchF69qrbtMz6ZMKljSfYDTq6qPfuORZPPjom6YAUqdWkZa3Vdn6tZS3I58OCqOnGo/b7AEVV1y34i0xSr5KlrZwLvSPJI4GiW7uB+uJeoNKm+1L4fdd0UTVlfaVmsQKUubdh3AFp0rgTWGtF+G4ZK1asfjjCpU0mmK9VbVbXRvAWjibesIiKubZIkTbokB9DsMfgSbtyS5WHAp4GjqmqXvmJTw4RJkrToJVkHeAHwL8A7q+qCJA8Hzqkq92TSrLTr4v4d2AjYtqrOSvJi4C9V9ZN+o9OkSbIWcADwZJp9BqGZQnwIsHNVXdRTaGqt0ncAWrySrNPugSIttyRPSPKdJCcluVvb9uIkW/cdmyZDkgcBp9CU7H0RTSUqgG2A9/UVlyZTkucBXwH+RDM9b7X20BLgzX3FpcmSZL122wOq6p9VtT1wD+DpwDOAe1bV00yWFgY7s+pUktWS7NEusv4rsEHb/sEkr+g1OE0cOybqyJ7AR6vqAdy04MMPgIf3E5Im2JuBl1TV62iKiEw5Arh/LxFpEv0FuANAkp8mWauqTq2qb1fVIe4bt7CYMKlr76YZUn4+N+2YHAXs3EdAmmh2TNSFB9FMdxn2N2CdeY5Fk29jYNSeXpdy4+iltCyXALdvH2/FjTcEtQBZJU9d2xHYtaoOHyq9egLNULM0G3ZM1IUrgNuOaN8EOG+eY9HkO4fm/9lw0ZlHAW7arpn6MfDTJFOb0n4jydWjTqyqx8xfWBrFhElduzNL/xOB5lrzetNs2TFRF74FvDvJs9rnlWQD4IPA13uLSpNqX2DvtsgDwN3arTT2AHbvLSpNmhcAuwJ3B7akWWd5ea8RaSw7sOraiTSd2dOH2neg2XhUmg07JurCG4FDgfOBWwC/pJmK9yvgHT3GpQlUVXskuQ3wI5oNkX9GMwV9z6rap9fgNDGq6gpgH4Ak9wfeUFX/7DMmjWdZcXUqyZOBL9J0aN8OvIdm2stzge2q6sc9hqcJlOR9wOtoOiZwY8fknf1FpUmU5DHAA2nW7x7r3yOtiCS3ADaluZ5OqqpLew5Ji0iSuwNnV5Ub1y4AJkzqXJJtgbfRLLReBTgWeG9V/bDXwDSx7JhIkharJO8HTqmqA9pS4z8EtgYuAp5QVUdM+wKacyZMkqRFLcm7xhwq4ErgVOD77RQZaVpJfkZz7QwbvJ4OqKpj5zUwTawkZwDPrqojkjyRpqrndjR7x21WVY/uNUC5hknSwmXHRB15FrAecEuaQiLQFKi5jGZd092A85JsWVWn9ROiJsjJNNPM/wb8tm17MLAu8E3gEcArkjy+qn7SS4SaNOsAZ7ePnwh8paqOSvJ34Oj+wtIU92FSp5Jcn+S6MW+XJflDklf3Hacmxsk0a07uRPPP5Oz28QNpykE/Ajgyyda9RahJsBdNx3aDqlqvqtaj2VT7SOC9NMnTH4H/7i1CTZIrgf2r6l5V9cL27V7A54ALq+pBwCeA/+w1Sk2SC4H128ePA37aPl4VSC8R6SackqdOJXkFTfWyb9B0RgAeAjyVpoTv3YB/A3arqo/1EKImSJIPA6tU1WuH2vcCqqremOSjwBZV9bA+YtTCl+QvwPZVddxQ+/2Bb1bVBkkeCnyrqtzIVtNKciHw0Kr601D7PYDfVNXaSe4N/LqqbtNLkJooSfYGtqe5cfMAYP2quizJc4A3tUm4euSUPHVtW+CtVbXfQNvnkhwFPKWqtk9yCvAqwIRJy7IT8NAR7Z+m2dD2jTSlx3eex5g0edbhxiqLg1YH7tg+/j+akuPSsgS4N/CnofZNuXE04BrgeqSZeT3NfoPrAW+uqsva9jsBn+wtKt3AhEld2xp4w4j2w4G928c/Aj48bxFpktkxURd+DHw6yUu5cT+4B9F0RH7UPr8v8JceYtPkOQDYL8nGNFM9C9gC2A3Yvz1nS+CEXqLTxKmqa2mmDg+3O014gTBhUtcupJl+t+dQ+1OBC9rHt6IplSktix0TdeHFwIE004Sva9tWoSnd+5L2+SU0I5bSsryRZkTydTSFHgDOBT7Ejf/7fgB8b/5D06Rqt8+4P82o92CNgaqqb/QSlG7gGiZ1KsmuwGdo/lkcxY0d3McBL6mq/ZO8Edi8qp7TX6SaBEmWAG8CXs1NOyYfpdm89rok6wHXV9XZY15GAiDJPYF70oxOnlxVf+w5JE24JGsCVNXFfceiyZXkscBBwNojDldVLZnnkDTEhEmdS/IwmjVKm9B2TIC93XhNK8KOiSRpMUpyIs0sirdV1TnLOl/zz4RJkrToJXk2zRrL4ekuVNVTeglKEynJ7YD3Mf56WrOPuDS5klxGs0Htn/uORaO5hklzIsmdGf2PxA1GNWN2TNSFJB8CXgv8jGbjWu8UakXsR1P6eV+8ntSNX9FMFzZhWqBMmNSpJA8AvsiN0/EGFeA8XM2GHRN14YXAjlX1tb4D0aKwNbBNVR25zDOlmfkUsGd7s/l4muqvN/Bmc/+ckqdOJfktTaW89zKig1tVZ/QRlyZTkouxY6IVlOR84GFVdWrfsWjyJTmVZiPkE/uORYtDkum2xrDowwLgCJO6tinwAKtPqSPnAZf2HYQm3r7A84Hde45Di8Pbgfcm2amq/PukLmzYdwCaniNM6lSSI2h2qf5537Fo8rUL9XcA7JhouSXZB3gucBJwHEtPd3l1H3FpMiU5HtiAZor5GSx9PW3WQ1iS5pAjTOra24A9kryD0fNw/95LVJpU76DpmJyXxI6JltemwO/bx5sMHfOuoWbLtXDqXJJVafatXA+42eCxqjqwl6B0A0eY1KmhebiDF1dwHq5mKcm7pzteVe+Zr1gkSZoLSTYBvk0zNS/AdTSDGtcAV1kRtn8mTOpUki2nO15Vh89XLJIkSQtdku8D/wReBJwL3B+4DfBJ4B1V9aPeghNgwiRJWoSSHAI8v6oubh+P5ca1Wpa2YudGVXVBkkuYZiqnowGarSQXAltW1QlJLgK2qKpT2pvQH3P6ef9cw6QVluSBwO+r6vr28VjuJaBlsWOijlzIjdfOhX0GokXhVcAl7eNX9hmIFqUAl7ePzwfuApwCnA3cva+gdCNHmLTC2nVL61bVee3jYulNa8E1TJqBJDsB/1tVV7WPx6qqA+YpLE2gJJsBJ1TVdHucSDOS5NXAvlV1Zd+xaHFJ8nPgv6vqG0m+BKwNvB94CbCZI0z9M2HSCkuyPnBmVVX7eCw3rtVM2DFRF5JcB9ypqs5rn38XeHFV/a3fyDSJRlxPFwP3r6rT+o1Mky7JtsAtq+rgJBsB36Gp6HkBsENVHdZnfDJhUkeSHAzsXFUXt88fDhxdVVf1G5kmkR0TdWFw9Lt9fglwP68jLQ+vJ82VJLegqYZ33UDb7YB/lB31BWGVvgPQorE9sMbA8+/RzMGVlsfwlM5RUzwlSZpoSZYAFwH3HGyvqr+bLC0cJkzqih1cSQtNsXTREDsgWl7D19Oo60ualXZU6QyGNqvVwmKVPEkLkR0TdSHAF5NMTQ1eA/hMkssHT7KsuGYowGlJpv4W3Qo4buA5YPVOLZf/AD6Q5PlVdUHfwWhpJkzq0mZJ/t4+DnDvJGsNnmBZcc2QHRN1YbiK4hd7iUKLxS59B6DFJcmjgN8AbwQ2BP6a5GzgssHzrJLXP4s+qBPLKCc+xbLimpFllROfYllxSfMpyarA44Ajq8r9vbRCpgocAS+f7ryqes/8RKRxTJjUiWWVE59iWXFJ0iRLciWwSVWd3ncsmmzDlRe1cDklT50wEdJcSHIa8ODhO7ntVM9jq2qjXgLTREmyBvAaYGvgjgwVPHK6i2bpD8DdgdN7jkOLgyMXE8CESZ1KsiVwZVUd2T7fGXgxcCLwhqq6tMfwNHk2AEZN41wduOv8hqIJ9gngacBXgV9jB0UrZndgryTvBo5h6fUmfx/1QdIYeye5YroTqmrX+QpGo5kwqWsfoflnQpJ7Ap8G9gMeAXyIZczTlQCSPH3g6XZJLhp4voRmpOAv8xuVJthTgWdV1Y/7DkSLwnfb9wdz0+Q77XPX6mo21gauWuZZ6pVrmNSpJBcD96+q05K8DfjXqnpSkocAX68qRwW0TO28bhhdSOQamqkwb6iq78xnXJpMbdWpravqlL5j0eRrZ1KMVVWHz1csmmyuYZocjjCpa4N317YGvtE+PpfmLoq0TFW1CkCSv9CsYXJfCq2IPYDXJ3l5VV2/zLOlaZgQqUOOWkwIEyZ17bfAO5P8CHgk8NK2fQOapEmasarasO8YtChsQ/P36PFJTqIZpbyBG9dqWZI8EPh9VV3fPh7L/QY1C9NtxaIFxIRJXXstcBCwPfC+qvpz2/4smsXW0rSSvB74RFVd2T4eq6o+PE9habJdwI2j3dLyOBpYFzivfTxu30HXMGk2dgEuajew/XVVXTt4sN3361+r6ue9RKcbuIZJ86It63tdVV2zzJO1Umun4W1eVRe2j8cpy4pLmg/tXoNnVlUta99Bt9nQbE1tYDu8linJ2sB5VWUS3jMTJnUqyUeAz1bVCX3HIkmDkmwEbEozCnByVZ3Wc0iSNFX8YZ2qOn+o/R7A0VW1Zj+RaYpT8tS1BwOvTnI08Fngf6vq4p5j0oRJ8uCq+u0yzvmvqnrrfMWkyZVkTZrtDZ4BXH9jc74OvKiqLuktOE2sJHcG1gNuNtju9CnNVJJD2ocFfDHJYHnxJcB9cDnDgrDKsk+RZq6qHg7cC/gZ8G7gnCQHLqsMqzTk0HYfr5GS/CfNejlpJj4KbAY8Grh5+7Z12/aR/sLSJEpy5ySHAWcDvwIOo/mfN/UmzdSF7VuAfww8v5Dm+voU8PzeotMNnJKnOZNkFeCJwK7AdsCZNHd593UndE0nyedpOrQPq6q/Dh17D/AW4Bnuw6SZSHIh8NSq+sVQ+6OAb1SVWx5oxpJ8hWabjH+nqQz7eGAd4L3A66rqRz2GpwmU5N3AnlV1Wd+xaDRHmDSXVgPWBG5DM7R8JvAC4Mwkz+0zMC14LwKOBX6U5HZTjUneCbwVeLbJkmbh5jR3bIf9HVhjnmPR5NsS2K2q/h/NVKrzq+pgYDfgP3qNTBOpqt5jsrSwmTCpc0k2T/IJ4G80G0YeAWxcVVtX1b2BtwP/3WeMWtjazUWfTVPC93tJbpnkbcC7gOdW1Tf7jE8T51fAfyS5xVRDklsC78H1AZq9m9OUqocm6b5j+/gkmmme0qwkuV2STyb5Y5J/Jrl48K3v+GTRB3UsyfHAPYEfADsD362q64ZO+xImTFqGqroqyZNp1gf8HlgfeH5Vfa3PuDSRXgd8H/hrkuNoRgXuB1wGbNtnYJpI/w/YBDid5m/Ty5KcRTNF76/jP0waaz/gAcC+wDk0f6O0gLiGSZ1qp0x9bnjdiTQbSZ4+8HQdmgT72zSbIt+gnQYjLVOSm9Msnt6EZoH1ScD/VNUVvQamiZPkecDNqurzSR5Ik4yvDVwF7FRVX+01QE2cdhRpm6o6su9YNJoJk+ZMknVo5nZfv8yTpQHtnhTLUm7mJ6lv7VTPTWg2tr1gWedLw5KcCmxfVSf2HYtGM2FSp5KsCrwfeDnNPO97VNVpST4InFFVn+g1QEkrhaFRymk5UqmZaBOjDwFPpSlq9GPg1SZJWlFJng3sQDNCeWnf8WhpJkzqVLs/zjNoyj5/CbhvmzA9g6aq0Ba9BihppTDDUUpwpFIzlORDwCuA/wGuBHYEDquqZ/UamCZeu/57A5qKwmcA1wweryqLifTMog/q2o7ArlV1+FCH5QTgHj3FpAnVbnj8DGAjmkWwpwFfG95PRxpWVVaBVdeeDryoqv4XIMkXgV8lWTKiuJE0GxYzWuAcYVKnklwB3KuqTk9yCXC/doTp3sCRVXWrnkPUhEjyUeBVNLuf/5Fmof49aPb1+lhVvba/6CStbJJcDWw4WNSo/Z93j6o6q7/IJM01R5jUtROBR9GUWx20A3DMvEejiZTkSTRTX/4N2G+qcEiSVYCXAB9L8qOq+m6PYWqCtOsrtwDWA242eKyqDuwlKE2aJcDVQ23XYl9KWvT8JVfX3gN8McndaP65PCvJJsBzge16jUyTZFdg76r6zGBjmzh9ur2mXgSYMGmZ2uvl28CGNCOV19H8/7uGphS0CZNmIjT/364aaFsD+EySy6caquop8x6ZJk5bSnyjqrqgnZEzdspXVa05f5FpFBMmdaqqvp1kB+BtwPXAu4FjgScDv+wzNk2UzWmqUY3zFeDL8xSLJt9HaEa47w+c276/DfBJ4B19BaWJc8CIti/OexRaLF4FXNI+fmWfgWjZXMOkTiR5yfBowNDxNYDvVNVj5zEsTah2XcDGVXX2mON3Bf5UVTef38g0iZJcCGxZVSckuQjYoqpOaYuKfMwKVJL60k4XfhzNOu8L+45Ho1lFSF35+Lh9T5LcjGY6zN3nNyRNsNVZeq3AoGsYWociTSPA1JSp84G7tI/Pxr9LknpUVdcCBwO37jsWjeeUPHXllTRzu7erqp9NNbbJ0iHAvWiKQUgz9bIk4zbw8x+LZuME4H40ZemPAnZLch1NAZFT+wxMkyfJ6jRFaR4N3JGhm8/uN6jl8Aeamzen9xyHxnBKnjqT5K00G9Y+uqqObZOlbwAPAB5VVXZMNCNJTmeaBbBTqmrDuY9Gky7JtsAtq+rgJBsB3wE2AS4Adqiqw/qMT5MlyYHAk4BvAf/H0N+qqnprH3FpciV5AvABmnXfxwCXDR6vqr/3EZduZMKkTiXZC3gB8Bjg/TRlfLeqqv/Xa2BadJLczb1PtLyS3A74R/lPULOU5J/A9lV1eN+xaHFIcv3A08G/SQGqqpbMc0ga4pQ8daqq3tB2RI6l2XD00SZL6lKSdWkqm70IsOiDlinJa4AvVdX5U23esdUKOI9mdFLqyqP7DkDTc4RJnUiy98DT1YBdaMqInzR4XlW9ej7j0mRKshawD03loGtopip8DHgXsBvNBskfrqqD+opRkyPJmcC6wE+ALwDfrKrLp/8oabQkz6SZSbFzVf2j73gkzT0TJnUiyc+WfRZVVY+Z82A08ZJ8gmbvri8Dj6cpGnIocEvgPU6F0WwkCbAVzQbaz6C5qfNNmj10ftRuiCzNSJI1ga/RjAqcS3NT5wZVtVEfcWmyJbkT8HJg07bpZOCTVXVOf1FpigmTpAUnyRnAi6rqx+0i/VOBvavqtf1GpknXFqN5Ek3y9ETgn1V1536j0iRJ8k3gwcCXGF30Ya8ewtIES7INTRGRs4Aj2+YtgPWAp1bVD/uKTQ0TJs2pdkO2NapqXHloaSlJrgHWn7qzluRy4MFVdWK/kWkxaO/kPhd4MXDPqnJPQs1YksuAx1TVkcs8WZqBJCcDPwJeM1iIJslHgcdV1b16C06AG9eqI0m2TrLDUNtbgEuBfyb5frsuRZqJVbjpNJfruHHjUWnWkqyZZJckPwbOBF4KHIQb12r2zgSu6jsILSobAB8fUbVzH2D9+Q9Hw6ySp668Bfje1JMkW9CUFd+PZh7um4C3t++lZQnNRshTnZI1gM+0I003qKqnzHtkmjhJvkYz/e4SmnVxb6uqo9pjj6XZ0FaaqdcBeyR5hfsLqiNHA/cF/jjUfl/gd/MfjoY5JU+dSHIusF1VHdM+/xDwsKp6RPv8WcB/VtU9ewxTEyLJ52dyXlXtMtexaPIl+RJNgYcfVNV1Se5CU8lzV5qpn+5xohlLcgmwOrCEZqTp2sHjVbVmH3FpciXZEfgg8AngiLb5oTRFIN4CnDJ1blUdO+8ByoRJ3UhyJbDx1EaiSX4NHFpV/9k+3wA4oapu1V+UklZWSZYAT6FZt/Q44Dia0aavVtVf+oxNkyXJTtMdr6oD5isWLQ5DG9dOx01se+KUPHXlb8C/AGclWR14APDOgeO3xjnfkuZZknvSbHK8E3AZTWWzxwEvqKqTpvtYaRQTIs2BDfsOQNMzYVJXvkczp/stNHdxLwN+MXB8M5rS0JI0L5L8ArgP8HVgh6n9u5Ls1mtgmnjtjcHn0eyZUzSbaR9UVd4Y1KwkWQ3Yg2Zt5Z/7jkejOSVPnUhye+Bg4BE0lfF2qqpvDBz/CfCbqnpHTyFKWskkuZamytRnquqEgfZrgPs5wqTlkWRT4PvAmsDxbfN9gYuAx1fVyX3FpsmU5B/Ag6rKAjQLlAmTOpXkNsClVXXdUPvt2var+4lM0somyf2Bl9DsuXQ6cCBNKfGzMGHSckryI5ptDl5QVRe3bWvSFBZZvaq27TM+TZ4k+wEnV9Wefcei0UyY1Il2SPlhwLHDm9QmuTXNmqZfV9W1oz5ekuZKkjWAZ9GsZXo4zT5fbwE+W1X/6DM2TZ5xG2knuS9wRFXdsp/INKmSvJumXP3hNCXGLxs8XlUf7iMu3ciESZ1I8lJg56r61xHHAvwS+HxVfXbeg5OkVpK701TKeyGwNvDTqnpCv1FpkiT5O/DkqvrVUPsjgG9V1dr9RKZJlWS6Sp1VVRvNWzAayYRJnWjLiH+4qr425vjTgTeOSqgkab61ZcafBOxaVdv3HY8mR5IDgAfTTPec2jPnYcCngaPcH05afEyY1IkkF9AsWDxjzPENgGO88yZJmmRJ1gIOAJ4MTK3XXQU4BNilqv7ZT2RaDJKsA5xfVTPdm0nzwLLi6soawFrAyIQJuE17jiRJE6tNiLZvp3feCwhwUlW5dYaWS7sO/H3Ay4GbA/cATkvyQeCMqvpEn/GpuSMideGPNCXFx3lUe44kSRMrybuS3KKqTq2qb1fVIVV1apKbJ3lX3/FpIr2bZsTy+cDgXl5HATv3EZBuyoRJXTkI+I8kDxg+kOSBwO7Al+Y7KEmSOvZu4FYj2m/RHpNma0fgZVX1LWBwKt4JNKNN6plT8tSVjwBPBH6b5MfA1MZ99wIeC/yiPUeSpEkWYNQC8AcAf5/nWLQ43JnRSxpWxb76guAPQZ2oqmuSPI5mH4HnAo+k+afyR+BtwEeq6poeQ5QkabkluYQmUSqa9SWDSdMSmnW6n+ojNk28E2mWLpw+1L4DcMy8R6OlmDCpM21CtEf7JknSYvJKmhuBnwPeDlw0cOxqms6um9ZqebwH+GKSu9Ek389KsgnNDejteo1MgGXF1ZEkdwBeBny0qi4eOnYb4NXAJ6rqwj7ikySpC0m2BH49NWsiyV2AXYAXAetV1ZI+49NkSrItzYycB9HUGDgWeG9V/bDXwASYMKkjSf4TWL+qXjDm+IE0pTHfOb+RSZLUrXbj46cALwYeBxwHfBn4alX9pc/YJHXPKnnqypOB/aY5/jlg+3mKRZKkziW5Z5I9gHOAvYDftYdeUFV7mCxJi5MJk7ryL8Cfpzl+GrDhPMUiSVKnkvwCOAK4HbBDVW1UVe/oOSwtAkmuT3LdmLfLkvwhyav7jnNlZtEHdeUa4G7AWWOO3xW4dv7CkSSpUw8D9gE+U1Un9B2MFpVX0uxX+Q3gyLbtIcBTgQ/S9K8+kKSq6mN9BLiyM2FSV44Fngb8eszxZ3Dj1AVJkibN5sBLgF8kOR04kGbTdmlFbQu8taoGlzZ8LslRwFOqavskpwCvAkyYeuCUPHVlH+B1SV7TLoYFIMmqSV5LUyVvn76CkyRpRVTV76vq34E7AR+mWZd7Fk1farskt+0zPk20rYHDR7QfDjy2ffwjXNrQGxMmdaKqDqYZNv5v4B9JfpfkdzS7nu8F7FVVX+8zRkmSVlRVXVlVX6iqrYB7AR+i2bT93CTf6zU4TaoLaabfDXsqcEH7+FbcdO8vzSPLiqtTSbYAngfcnWaDvz8CX6qqo3oNTJKkOdLOrHgSsGtVWRFWs5JkV+AzwA+Ao4ACtqApWf+Sqto/yRuBzavqOf1FuvIyYdK8SHJLYMeq+mzfsUiSJC0kSR5Gs0ZpE5obzicDe1fVEb0GJsCESXOs/QPwIuDZNNfbrXoOSZIkSZoxq+Spc0nWBl5IswP6JsB3aZKm7/QZlyRJ0kKV5M7AHRmqMVBVx/YTkaY4wqTOJNmWJkl6Ms3mfl8EPgncr6pO6jM2SZKkhSjJA2j6TFPT8QZVVS1Z+qM0n0yY1Il2T4orgS8A/1NVp7ft12DCJEmSNFKS39JUynsvcA5N0YcbVNUZfcSlGzklT11ZF/gW8HuafSkkSZK0bJsCD6iqP/YdiEZzHyZ15W7A0cCewDlJPprkwQzdJZEkSdJNHE9z41kLlFPy1Lkkj6Qp8vBM4BbAx4B9q+rEXgOTJElaYJI8Bng/8A6a5OmaweNV9fc+4tKNTJg0Z5KsCTwX2BXYHDilqu7Vb1SSJEkLR5LrB54OdsyDRR8WBBMmzYsk9wVeXFWv6TsWSZKkhSLJltMdr6rD5ysWjWbRB3UiySF9xyBJkjRpTIgWPhMmdeVJwBnAYT3HIUmStKAleSDw+6q6vn08lhvX9s8peepEkj2A5wNXAJ8H9q+qs/uNSpIkaeFp1y2tW1XntY+LpTetBdcwLQgmTOpMkiXAdjRFHralGW3aD/hWVV0zzYdKkiStNJKsD5xZVdU+HsuNa/tnwqQ5kWRd4IU0ydPtgI2q6tJ+o5IkSVoYkhwM7FxVF7fPHw4cXVVX9RuZhrlxrebKLYG1gFsBl+IGtpIkSYO2B9YYeP494C49xaJpmDCpM0lunmSnJD+n2XhtfWCnqtqoqi7rOTxJkqSFZHjN0qg1TFoArJKnTiTZF3g28CeadUtPqap/9hqUJEmStIJcw6ROtBVezqQZWRp7UVXVU+YtKEmSpAWq7Ts9Dvh72/RzYEfgr4PnWVa8fyZM6kSS/ZnBOqWq2mXuo5EkSVrYllFOfIplxRcAEyZJkiRpni2rnPgUy4r3z4RJkiRJksaw6IMkSZLUoyS3AO4P3JGhKtZVdXAfMelGJkySJElST5I8FjgIWHvE4QJcw9Qz92GSJEmS+vNR4LvAXatqlaE3k6UFwDVMkiRJUk+SXAZsVlV/7jsWjeYIkyRJktSfXwH37DsIjecaJkmSJKk/nwL2THJn4HjgmsGDblzbP6fkSZIkST1pN7Adx41rFwBHmCRJkqT+bNh3AJqeI0ySJEmSNIYjTJIkSVKPkqwKbAGsB9xs8FhVHdhLULqBI0ySJElST5JsAnybZmpegOtoBjWuAa6qqjV7DE9YVlySJEnq00eAY4DbAJcD9wI2B34PPKO3qHQDp+RJkiRJ/XkwsGVVXdZWzFu1qo5N8mbgY8Bm/YYnR5gkSZKk/oRmZAngfOAu7eOzgbv3EpFuwhEmSZIkqT8nAPcDTgOOAnZLch3wEuDUPgNTw6IPkiRJUk+SbAvcsqoOTrIR8B1gE+ACYIeqOqzP+GTCJEmSJC0oSW4H/KPsqC8IJkySJEmSNIZrmCRJkqSeJPkZMGoEo4AradYxHVBVx85rYLqBVfIkSZKk/pwMPBC4E01lvLPbxw8EzgMeARyZZOveIlzJOcIkSZIk9edKYP+qeu1gY5K9gKqqByX5KPCfwE96iG+l5xomSZIkqSdJLgQeWlV/Gmq/B/Cbqlo7yb2BX1fVbXoJciXnlDxJkiSpPwHuPaJ90/YYwDXA9fMWkW7CKXmSJElSfw4A9kuyMfBbmmIPWwC7Afu352xJs8GteuCUPEmSJKknSZYAbwJeDazbNp8LfBTYs6quS7IecH1Vnd1TmCs1EyZJkiSpB0lWBV4KfLOqzkmyJkBVXdxvZBpkwiRJkiT1JMllwKZVdUbfsWg0iz5IkiRJ/TkCeFDfQWg8iz5IkiRJ/fkMsGe7TukY4LLBg1V1bC9R6QZOyZMkSZJ6kmS6cuFVVUvmLRiN5AiTJEmS1J8N+w5A03OESZIkSZLGsOiDJEmS1KMkmyU5MMnRSX6b5IAk9+07LjVMmCRJkqSeJHkKcCxwN+B7wPeB9YBjkzy5z9jUcEqeJEmS1JMkxwHfqKp3D7W/F9i+qu7XT2SaYsIkSZIk9STJlcB9qurUofaNgeOrao1+ItMUp+RJkiRJ/TmP0RvXPgj4v3mORSNYVlySJEnqz2eATye5O/BroIBHAG8EPtRnYGo4JU+SJEnqSZIArwXeANy5bT6HJlnau+ys986ESZIkSVoAktwaoKou6TsW3ciESZIkSZpnSQ6ZyXlV9ZS5jkXTcw2TJEmSNP+eBJwBHNZzHFoGR5gkSZKkeZZkD+D5wBXA54H9q+rsfqPSKCZMkiRJUg+SLAG2A3YFtqUZbdoP+FZVXdNjaBpgwiRJkiT1LMm6wAtpkqfbARtV1aX9RiVw41pJkiRpIbglsBZwK+BSmv2YtACYMEmSJEk9SHLzJDsl+TlwPLA+sFNVbVRVl/UcnlpWyZMkSZLmWZJ9gWcDf6JZt/SUqvpnr0FpJNcwSZIkSfMsyfXAmTQjS2M75O7D1D9HmCRJkqT5dyCuU5oIjjBJkiRJ0hgWfZAkSZKkMUyYJEmSJGkMEyZJkiRJGsOESZIkSZLGMGGSJEmSpDH+Px6mqVnHjqbQAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "