-
Notifications
You must be signed in to change notification settings - Fork 30
/
noise_midval.m
68 lines (57 loc) · 2.02 KB
/
noise_midval.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
clc; clear;
data = imread('zxc.jpg'); % 数据——最好比卷积核的尺寸大
data = im2double(data); % 原图像进来是uint8,矩阵运算时double 故要转一下
% rgb转为灰度图像
data = rgb2gray(data); % 再把数据转为单通道弧度图
figure(1);
imshow(data);
title('原始灰度值图像');
% 高斯噪声: 均值为m,方差为var的高斯噪声加到图像中 var越大越模糊
% noise_data = imnoise(data, 'gaussian', 0.2);
% 椒盐噪声: 0.1是全图10%的程度受污染
noise_data = imnoise(data, 'salt & pepper', 0.3);
% noise_data = im2double(noise_data); % 这里记得要先转为double类型
figure(2);
imshow(noise_data);
title('加入"高斯/椒盐"噪声后图像')
% 开始卷积滤波:
x = [1 1 1;1 1 1;1 1 1]; % 卷积核——必须是方阵且为奇数行/列
x = rot90(rot90(x)); % 新的卷积核——卷积核要翻转180°
% 核的尺寸
size_x = size(x);
row_x = size_x(1); % 核的行数
col_x = size_x(2); % 核的列数
% 数据的尺寸
size_data = size(data);
row_data = size_data(1); % 数据的行数
col_data = size_data(2); % 数据的列数
% 核的中心元素:
centerx_row = round(row_x/2);
centerx_col = round(col_x/2);
centerx = x(centerx_row,centerx_col);
% 对原始数据扩边:
data_tmp = zeros(row_data+row_x-1,col_data+row_x-1);
data_tmp(centerx_row:centerx_row+row_data-1,centerx_row:centerx_row+col_data-1) = noise_data;
data_k = data_tmp;
% 扩边后新数据矩阵尺寸:
size_data_k = size(data_k);
row_data_k = size_data_k(1);
col_data_k = size_data_k(2);
% 开始卷积计算: m n 是新数据矩阵的正常索引
result = zeros(row_data_k,col_data_k);
% m n一般卷积步长都是1
for m = centerx_row:centerx_row+row_data-1
for n = centerx_row:centerx_row+col_data-1
% tt是临时与卷积核大小相同的数据中的部分矩阵:
tt = data_k(m-(centerx_row-1):m+(centerx_row-1),n-(centerx_row-1):n+(centerx_row-1));
% juan是中间每一次卷积计算求和的中间量:
juan = median(x.*tt);
result(m,n) = median(juan(:));
end
end
% 求掉之前扩边的0:
result = result(centerx_row:centerx_row+row_data-1,centerx_row:centerx_row+col_data-1);
% 做图:
figure(3);
imshow(result)
title('中值滤波后图像');