forked from DiT-3D/DiT-3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
929 lines (728 loc) · 38.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import argparse
from torch.distributions import Normal
from utils.file_utils import *
from utils.visualize import *
import torch.distributed as dist
from datasets.shapenet_data_pc import ShapeNet15kPointClouds
from copy import deepcopy
from collections import OrderedDict
from models.dit3d import DiT3D_models
from models.dit3d_window_attn import DiT3D_models_WindAttn
from tensorboardX import SummaryWriter
'''
some utils
'''
@torch.no_grad()
def update_ema(ema_model, model, decay=0.9999):
"""
Step the EMA model towards the current model.
"""
ema_params = OrderedDict(ema_model.named_parameters())
model_params = OrderedDict(model.named_parameters())
for name, param in model_params.items():
# TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed
if name.startswith('model.module'):
name = name.replace('model.module.', 'model.')
ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)
def requires_grad(model, flag=True):
"""
Set requires_grad flag for all parameters in a model.
"""
for p in model.parameters():
p.requires_grad = flag
def rotation_matrix(axis, theta):
"""
Return the rotation matrix associated with counterclockwise rotation about
the given axis by theta radians.
"""
axis = np.asarray(axis)
axis = axis / np.sqrt(np.dot(axis, axis))
a = np.cos(theta / 2.0)
b, c, d = -axis * np.sin(theta / 2.0)
aa, bb, cc, dd = a * a, b * b, c * c, d * d
bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)],
[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
def rotate(vertices, faces):
'''
vertices: [numpoints, 3]
'''
M = rotation_matrix([0, 1, 0], np.pi / 2).transpose()
N = rotation_matrix([1, 0, 0], -np.pi / 4).transpose()
K = rotation_matrix([0, 0, 1], np.pi).transpose()
v, f = vertices[:,[1,2,0]].dot(M).dot(N).dot(K), faces[:,[1,2,0]]
return v, f
def norm(v, f):
v = (v - v.min())/(v.max() - v.min()) - 0.5
return v, f
def getGradNorm(net):
pNorm = torch.sqrt(sum(torch.sum(p ** 2) for p in net.parameters()))
gradNorm = torch.sqrt(sum(torch.sum(p.grad ** 2) for p in net.parameters()))
return pNorm, gradNorm
def weights_init(m):
"""
xavier initialization
"""
classname = m.__class__.__name__
if classname.find('Conv') != -1 and m.weight is not None:
torch.nn.init.xavier_normal_(m.weight)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_()
m.bias.data.fill_(0)
'''
models
'''
def normal_kl(mean1, logvar1, mean2, logvar2):
"""
KL divergence between normal distributions parameterized by mean and log-variance.
"""
return 0.5 * (-1.0 + logvar2 - logvar1 + torch.exp(logvar1 - logvar2)
+ (mean1 - mean2)**2 * torch.exp(-logvar2))
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
# Assumes data is integers [0, 1]
assert x.shape == means.shape == log_scales.shape
px0 = Normal(torch.zeros_like(means), torch.ones_like(log_scales))
centered_x = x - means
inv_stdv = torch.exp(-log_scales)
plus_in = inv_stdv * (centered_x + 0.5)
cdf_plus = px0.cdf(plus_in)
min_in = inv_stdv * (centered_x - .5)
cdf_min = px0.cdf(min_in)
log_cdf_plus = torch.log(torch.max(cdf_plus, torch.ones_like(cdf_plus)*1e-12))
log_one_minus_cdf_min = torch.log(torch.max(1. - cdf_min, torch.ones_like(cdf_min)*1e-12))
cdf_delta = cdf_plus - cdf_min
log_probs = torch.where(
x < 0.001, log_cdf_plus,
torch.where(x > 0.999, log_one_minus_cdf_min,
torch.log(torch.max(cdf_delta, torch.ones_like(cdf_delta)*1e-12))))
assert log_probs.shape == x.shape
return log_probs
class GaussianDiffusion:
def __init__(self,betas, loss_type, model_mean_type, model_var_type):
self.loss_type = loss_type
self.model_mean_type = model_mean_type
self.model_var_type = model_var_type
assert isinstance(betas, np.ndarray)
self.np_betas = betas = betas.astype(np.float64) # computations here in float64 for accuracy
assert (betas > 0).all() and (betas <= 1).all()
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
# initialize twice the actual length so we can keep running for eval
# betas = np.concatenate([betas, np.full_like(betas[:int(0.2*len(betas))], betas[-1])])
alphas = 1. - betas
alphas_cumprod = torch.from_numpy(np.cumprod(alphas, axis=0)).float()
alphas_cumprod_prev = torch.from_numpy(np.append(1., alphas_cumprod[:-1])).float()
self.betas = torch.from_numpy(betas).float()
self.alphas_cumprod = alphas_cumprod.float()
self.alphas_cumprod_prev = alphas_cumprod_prev.float()
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod).float()
self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod).float()
self.log_one_minus_alphas_cumprod = torch.log(1. - alphas_cumprod).float()
self.sqrt_recip_alphas_cumprod = torch.sqrt(1. / alphas_cumprod).float()
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1. / alphas_cumprod - 1).float()
betas = torch.from_numpy(betas).float()
alphas = torch.from_numpy(alphas).float()
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.posterior_variance = posterior_variance
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.posterior_log_variance_clipped = torch.log(torch.max(posterior_variance, 1e-20 * torch.ones_like(posterior_variance)))
self.posterior_mean_coef1 = betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)
self.posterior_mean_coef2 = (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod)
@staticmethod
def _extract(a, t, x_shape):
"""
Extract some coefficients at specified timesteps,
then reshape to [batch_size, 1, 1, 1, 1, ...] for broadcasting purposes.
"""
bs, = t.shape
assert x_shape[0] == bs
out = torch.gather(a, 0, t)
assert out.shape == torch.Size([bs])
return torch.reshape(out, [bs] + ((len(x_shape) - 1) * [1]))
def q_mean_variance(self, x_start, t):
mean = self._extract(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start
variance = self._extract(1. - self.alphas_cumprod.to(x_start.device), t, x_start.shape)
log_variance = self._extract(self.log_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape)
return mean, variance, log_variance
def q_sample(self, x_start, t, noise=None):
"""
Diffuse the data (t == 0 means diffused for 1 step)
"""
if noise is None:
noise = torch.randn(x_start.shape, device=x_start.device)
assert noise.shape == x_start.shape
return (
self._extract(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
self._extract(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise
)
def q_posterior_mean_variance(self, x_start, x_t, t):
"""
Compute the mean and variance of the diffusion posterior q(x_{t-1} | x_t, x_0)
"""
assert x_start.shape == x_t.shape
posterior_mean = (
self._extract(self.posterior_mean_coef1.to(x_start.device), t, x_t.shape) * x_start +
self._extract(self.posterior_mean_coef2.to(x_start.device), t, x_t.shape) * x_t
)
posterior_variance = self._extract(self.posterior_variance.to(x_start.device), t, x_t.shape)
posterior_log_variance_clipped = self._extract(self.posterior_log_variance_clipped.to(x_start.device), t, x_t.shape)
assert (posterior_mean.shape[0] == posterior_variance.shape[0] == posterior_log_variance_clipped.shape[0] ==
x_start.shape[0])
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, denoise_fn, data, t, y, clip_denoised: bool, return_pred_xstart: bool):
# print('data:', data.shape)
model_output = denoise_fn(data, t, y)
# print('model_output:', model_output.shape)
if self.model_var_type in ['fixedsmall', 'fixedlarge']:
# below: only log_variance is used in the KL computations
model_variance, model_log_variance = {
# for fixedlarge, we set the initial (log-)variance like so to get a better decoder log likelihood
'fixedlarge': (self.betas.to(data.device),
torch.log(torch.cat([self.posterior_variance[1:2], self.betas[1:]])).to(data.device)),
'fixedsmall': (self.posterior_variance.to(data.device), self.posterior_log_variance_clipped.to(data.device)),
}[self.model_var_type]
model_variance = self._extract(model_variance, t, data.shape) * torch.ones_like(data)
model_log_variance = self._extract(model_log_variance, t, data.shape) * torch.ones_like(data)
else:
raise NotImplementedError(self.model_var_type)
if self.model_mean_type == 'eps':
x_recon = self._predict_xstart_from_eps(data, t=t, eps=model_output)
if clip_denoised:
x_recon = torch.clamp(x_recon, -.5, .5)
model_mean, _, _ = self.q_posterior_mean_variance(x_start=x_recon, x_t=data, t=t)
else:
raise NotImplementedError(self.loss_type)
assert model_mean.shape == x_recon.shape == data.shape
assert model_variance.shape == model_log_variance.shape == data.shape
if return_pred_xstart:
return model_mean, model_variance, model_log_variance, x_recon
else:
return model_mean, model_variance, model_log_variance
def _predict_xstart_from_eps(self, x_t, t, eps):
assert x_t.shape == eps.shape
return (
self._extract(self.sqrt_recip_alphas_cumprod.to(x_t.device), t, x_t.shape) * x_t -
self._extract(self.sqrt_recipm1_alphas_cumprod.to(x_t.device), t, x_t.shape) * eps
)
''' samples '''
def p_sample(self, denoise_fn, data, t, noise_fn, y, clip_denoised=False, return_pred_xstart=False):
"""
Sample from the model
"""
model_mean, _, model_log_variance, pred_xstart = self.p_mean_variance(denoise_fn, data=data, t=t, y=y, clip_denoised=clip_denoised,
return_pred_xstart=True)
noise = noise_fn(size=data.shape, dtype=data.dtype, device=data.device)
assert noise.shape == data.shape
# no noise when t == 0
nonzero_mask = torch.reshape(1 - (t == 0).float(), [data.shape[0]] + [1] * (len(data.shape) - 1))
sample = model_mean + nonzero_mask * torch.exp(0.5 * model_log_variance) * noise
assert sample.shape == pred_xstart.shape
return (sample, pred_xstart) if return_pred_xstart else sample
def p_sample_loop(self, denoise_fn, shape, device, y,
noise_fn=torch.randn, clip_denoised=True, keep_running=False):
"""
Generate samples
keep_running: True if we run 2 x num_timesteps, False if we just run num_timesteps
"""
assert isinstance(shape, (tuple, list))
img_t = noise_fn(size=shape, dtype=torch.float, device=device)
for t in reversed(range(0, self.num_timesteps if not keep_running else len(self.betas))):
t_ = torch.empty(shape[0], dtype=torch.int64, device=device).fill_(t)
img_t = self.p_sample(denoise_fn=denoise_fn, data=img_t,t=t_, noise_fn=noise_fn, y=y,
clip_denoised=clip_denoised, return_pred_xstart=False)
assert img_t.shape == shape
return img_t
def p_sample_loop_trajectory(self, denoise_fn, shape, device, y, freq,
noise_fn=torch.randn,clip_denoised=True, keep_running=False):
"""
Generate samples, returning intermediate images
Useful for visualizing how denoised images evolve over time
Args:
repeat_noise_steps (int): Number of denoising timesteps in which the same noise
is used across the batch. If >= 0, the initial noise is the same for all batch elemements.
"""
assert isinstance(shape, (tuple, list))
total_steps = self.num_timesteps if not keep_running else len(self.betas)
img_t = noise_fn(size=shape, dtype=torch.float, device=device)
imgs = [img_t]
for t in reversed(range(0,total_steps)):
t_ = torch.empty(shape[0], dtype=torch.int64, device=device).fill_(t)
img_t = self.p_sample(denoise_fn=denoise_fn, data=img_t, t=t_, noise_fn=noise_fn, y=y,
clip_denoised=clip_denoised,
return_pred_xstart=False)
if t % freq == 0 or t == total_steps-1:
imgs.append(img_t)
assert imgs[-1].shape == shape
return imgs
'''losses'''
def _vb_terms_bpd(self, denoise_fn, data_start, data_t, t, y, clip_denoised: bool, return_pred_xstart: bool):
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(x_start=data_start, x_t=data_t, t=t)
model_mean, _, model_log_variance, pred_xstart = self.p_mean_variance(
denoise_fn, data=data_t, t=t, y=y, clip_denoised=clip_denoised, return_pred_xstart=True)
kl = normal_kl(true_mean, true_log_variance_clipped, model_mean, model_log_variance)
kl = kl.mean(dim=list(range(1, len(data_start.shape)))) / np.log(2.)
return (kl, pred_xstart) if return_pred_xstart else kl
def p_losses(self, denoise_fn, data_start, t, noise=None, y=None):
"""
Training loss calculation
"""
B, D, N = data_start.shape
assert t.shape == torch.Size([B])
if noise is None:
noise = torch.randn(data_start.shape, dtype=data_start.dtype, device=data_start.device)
assert noise.shape == data_start.shape and noise.dtype == data_start.dtype
data_t = self.q_sample(x_start=data_start, t=t, noise=noise)
if self.loss_type == 'mse':
# predict the noise instead of x_start. seems to be weighted naturally like SNR
eps_recon = denoise_fn(data_t, t, y)
assert data_t.shape == data_start.shape
assert eps_recon.shape == torch.Size([B, D, N])
assert eps_recon.shape == data_start.shape
losses = ((noise - eps_recon)**2).mean(dim=list(range(1, len(data_start.shape))))
elif self.loss_type == 'kl':
losses = self._vb_terms_bpd(
denoise_fn=denoise_fn, data_start=data_start, data_t=data_t, t=t, y=y, clip_denoised=False,
return_pred_xstart=False)
else:
raise NotImplementedError(self.loss_type)
assert losses.shape == torch.Size([B])
return losses
'''debug'''
def _prior_bpd(self, x_start):
with torch.no_grad():
B, T = x_start.shape[0], self.num_timesteps
t_ = torch.empty(B, dtype=torch.int64, device=x_start.device).fill_(T-1)
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t=t_)
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance,
mean2=torch.tensor([0.]).to(qt_mean), logvar2=torch.tensor([0.]).to(qt_log_variance))
assert kl_prior.shape == x_start.shape
return kl_prior.mean(dim=list(range(1, len(kl_prior.shape)))) / np.log(2.)
def calc_bpd_loop(self, denoise_fn, x_start, y, clip_denoised=True):
with torch.no_grad():
B, T = x_start.shape[0], self.num_timesteps
vals_bt_, mse_bt_= torch.zeros([B, T], device=x_start.device), torch.zeros([B, T], device=x_start.device)
for t in reversed(range(T)):
t_b = torch.empty(B, dtype=torch.int64, device=x_start.device).fill_(t)
# Calculate VLB term at the current timestep
new_vals_b, pred_xstart = self._vb_terms_bpd(
denoise_fn, data_start=x_start, data_t=self.q_sample(x_start=x_start, t=t_b), t=t_b,
y=y, clip_denoised=clip_denoised, return_pred_xstart=True)
# MSE for progressive prediction loss
assert pred_xstart.shape == x_start.shape
new_mse_b = ((pred_xstart-x_start)**2).mean(dim=list(range(1, len(x_start.shape))))
assert new_vals_b.shape == new_mse_b.shape == torch.Size([B])
# Insert the calculated term into the tensor of all terms
mask_bt = t_b[:, None]==torch.arange(T, device=t_b.device)[None, :].float()
vals_bt_ = vals_bt_ * (~mask_bt) + new_vals_b[:, None] * mask_bt
mse_bt_ = mse_bt_ * (~mask_bt) + new_mse_b[:, None] * mask_bt
assert mask_bt.shape == vals_bt_.shape == vals_bt_.shape == torch.Size([B, T])
prior_bpd_b = self._prior_bpd(x_start)
total_bpd_b = vals_bt_.sum(dim=1) + prior_bpd_b
assert vals_bt_.shape == mse_bt_.shape == torch.Size([B, T]) and \
total_bpd_b.shape == prior_bpd_b.shape == torch.Size([B])
return total_bpd_b.mean(), vals_bt_.mean(), prior_bpd_b.mean(), mse_bt_.mean()
class Model(nn.Module):
def __init__(self, args, betas, loss_type: str, model_mean_type: str, model_var_type:str):
super(Model, self).__init__()
self.diffusion = GaussianDiffusion(betas, loss_type, model_mean_type, model_var_type)
if args.window_size > 0:
self.model = DiT3D_models_WindAttn[args.model_type](pretrained=args.use_pretrained,
input_size=args.voxel_size,
window_size=args.window_size,
window_block_indexes=args.window_block_indexes,
num_classes=args.num_classes
)
else:
self.model = DiT3D_models[args.model_type](pretrained=args.use_pretrained,
input_size=args.voxel_size,
num_classes=args.num_classes
)
def prior_kl(self, x0):
return self.diffusion._prior_bpd(x0)
def all_kl(self, x0, y, clip_denoised=True):
total_bpd_b, vals_bt, prior_bpd_b, mse_bt = self.diffusion.calc_bpd_loop(self._denoise, x0, y, clip_denoised)
return {
'total_bpd_b': total_bpd_b,
'terms_bpd': vals_bt,
'prior_bpd_b': prior_bpd_b,
'mse_bt':mse_bt
}
def _denoise(self, data, t, y):
B, D,N= data.shape
assert data.dtype == torch.float
assert t.shape == torch.Size([B]) and t.dtype == torch.int64
out = self.model(data, t, y)
assert out.shape == torch.Size([B, D, N])
return out
def get_loss_iter(self, data, noises=None, y=None):
B, D, N = data.shape # [16, 3, 2048]
t = torch.randint(0, self.diffusion.num_timesteps, size=(B,), device=data.device)
if noises is not None:
noises[t!=0] = torch.randn((t!=0).sum(), *noises.shape[1:]).to(noises)
losses = self.diffusion.p_losses(
denoise_fn=self._denoise, data_start=data, t=t, noise=noises, y=y)
assert losses.shape == t.shape == torch.Size([B])
return losses
def gen_samples(self, shape, device, y, noise_fn=torch.randn,
clip_denoised=True,
keep_running=False):
return self.diffusion.p_sample_loop(self._denoise, shape=shape, device=device, y=y, noise_fn=noise_fn,
clip_denoised=clip_denoised,
keep_running=keep_running)
def gen_sample_traj(self, shape, device, y, freq, noise_fn=torch.randn,
clip_denoised=True,keep_running=False):
return self.diffusion.p_sample_loop_trajectory(self._denoise, shape=shape, device=device, y=y, noise_fn=noise_fn, freq=freq,
clip_denoised=clip_denoised,
keep_running=keep_running)
def train(self):
self.model.train()
def eval(self):
self.model.eval()
def multi_gpu_wrapper(self, f):
self.model = f(self.model)
def get_betas(schedule_type, b_start, b_end, time_num):
if schedule_type == 'linear':
betas = np.linspace(b_start, b_end, time_num)
elif schedule_type == 'warm0.1':
betas = b_end * np.ones(time_num, dtype=np.float64)
warmup_time = int(time_num * 0.1)
betas[:warmup_time] = np.linspace(b_start, b_end, warmup_time, dtype=np.float64)
elif schedule_type == 'warm0.2':
betas = b_end * np.ones(time_num, dtype=np.float64)
warmup_time = int(time_num * 0.2)
betas[:warmup_time] = np.linspace(b_start, b_end, warmup_time, dtype=np.float64)
elif schedule_type == 'warm0.5':
betas = b_end * np.ones(time_num, dtype=np.float64)
warmup_time = int(time_num * 0.5)
betas[:warmup_time] = np.linspace(b_start, b_end, warmup_time, dtype=np.float64)
else:
raise NotImplementedError(schedule_type)
return betas
def get_dataset(dataroot, npoints,category):
tr_dataset = ShapeNet15kPointClouds(root_dir=dataroot,
categories=category.split(','), split='train',
tr_sample_size=npoints,
te_sample_size=npoints,
scale=1.,
normalize_per_shape=False,
normalize_std_per_axis=False,
random_subsample=True)
te_dataset = ShapeNet15kPointClouds(root_dir=dataroot,
categories=category.split(','), split='val',
tr_sample_size=npoints,
te_sample_size=npoints,
scale=1.,
normalize_per_shape=False,
normalize_std_per_axis=False,
all_points_mean=tr_dataset.all_points_mean,
all_points_std=tr_dataset.all_points_std,
)
return tr_dataset, te_dataset
def get_dataloader(opt, train_dataset, test_dataset=None):
if opt.distribution_type == 'multi':
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset,
num_replicas=opt.world_size,
rank=opt.rank
)
if test_dataset is not None:
test_sampler = torch.utils.data.distributed.DistributedSampler(
test_dataset,
num_replicas=opt.world_size,
rank=opt.rank
)
else:
test_sampler = None
else:
train_sampler = None
test_sampler = None
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=opt.bs,sampler=train_sampler,
shuffle=train_sampler is None, num_workers=int(opt.workers), drop_last=True)
if test_dataset is not None:
test_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=opt.bs,sampler=test_sampler,
shuffle=False, num_workers=int(opt.workers), drop_last=False)
else:
test_dataloader = None
return train_dataloader, test_dataloader, train_sampler, test_sampler
def train(gpu, opt, output_dir, noises_init):
set_seed(opt)
logger = setup_logging(output_dir)
if not opt.debug:
if opt.use_tb:
# tb writers
tb_writer = SummaryWriter(output_dir)
if opt.distribution_type == 'multi':
should_diag = gpu==0
else:
should_diag = True
if should_diag:
outf_syn, = setup_output_subdirs(output_dir, 'syn')
if opt.distribution_type == 'multi':
if opt.dist_url == "env://" and opt.rank == -1:
opt.rank = int(os.environ["RANK"])
base_rank = opt.rank * opt.ngpus_per_node
opt.rank = base_rank + gpu
dist.init_process_group(backend=opt.dist_backend, init_method=opt.dist_url,
world_size=opt.world_size, rank=opt.rank)
opt.bs = int(opt.bs / opt.ngpus_per_node)
opt.workers = 0
opt.saveIter = int(opt.saveIter / opt.ngpus_per_node)
opt.diagIter = int(opt.diagIter / opt.ngpus_per_node)
opt.vizIter = int(opt.vizIter / opt.ngpus_per_node)
''' data '''
train_dataset, _ = get_dataset(opt.dataroot, opt.npoints, opt.category)
dataloader, _, train_sampler, _ = get_dataloader(opt, train_dataset, None)
'''
create networks
'''
betas = get_betas(opt.schedule_type, opt.beta_start, opt.beta_end, opt.time_num)
model = Model(opt, betas, opt.loss_type, opt.model_mean_type, opt.model_var_type)
# Note that parameter initialization is done within the DiT constructor
if opt.use_ema:
ema = deepcopy(model).to(gpu) # Create an EMA of the model for use after training
requires_grad(ema, False)
if opt.distribution_type == 'multi': # Multiple processes, single GPU per process
def _transform_(m):
return nn.parallel.DistributedDataParallel(
m, device_ids=[gpu], output_device=gpu)
torch.cuda.set_device(gpu)
model.cuda(gpu)
model.multi_gpu_wrapper(_transform_)
elif opt.distribution_type == 'single':
def _transform_(m):
return nn.parallel.DataParallel(m)
model = model.cuda()
model.multi_gpu_wrapper(_transform_)
elif gpu is not None:
torch.cuda.set_device(gpu)
model = model.cuda(gpu)
else:
raise ValueError('distribution_type = multi | single | None')
if should_diag:
logger.info(opt)
print("Model = %s" % str(model))
total_params = sum(param.numel() for param in model.parameters())/1e6
print("Total_params = %s MB " % str(total_params))
# Setup optimizer (we used default Adam betas=(0.9, 0.999) and a constant learning rate of 1e-4 in our paper):
optimizer = torch.optim.AdamW(model.parameters(), lr=opt.lr, weight_decay=0)
if opt.model != '':
ckpt = torch.load(opt.model)
model.load_state_dict(ckpt['model_state'])
optimizer.load_state_dict(ckpt['optimizer_state'])
if opt.model != '':
start_epoch = torch.load(opt.model)['epoch'] + 1
else:
start_epoch = 0
def new_x_chain(x, num_chain):
return torch.randn(num_chain, *x.shape[1:], device=x.device)
def new_y_chain(y, num_chain, num_classes):
return torch.randint(low=0,high=num_classes,size=(num_chain,),device=y.device)
# Prepare models for training:
if opt.use_ema:
update_ema(ema, model, decay=0) # Ensure EMA is initialized with synced weights
model.train() # important! This enables embedding dropout for classifier-free guidance
ema.eval() # EMA model should always be in eval mode
for epoch in range(start_epoch, opt.niter):
if opt.distribution_type == 'multi':
train_sampler.set_epoch(epoch)
for i, data in enumerate(dataloader):
x = data['train_points'].transpose(1,2)
noises_batch = noises_init[data['idx']].transpose(1,2)
y = data['cate_idx']
'''
train diffusion
'''
if opt.distribution_type == 'multi' or (opt.distribution_type is None and gpu is not None):
x = x.cuda(gpu)
noises_batch = noises_batch.cuda(gpu)
y = y.cuda(gpu)
elif opt.distribution_type == 'single':
x = x.cuda()
noises_batch = noises_batch.cuda()
y = y.cuda()
loss = model.get_loss_iter(x, noises_batch, y).mean()
optimizer.zero_grad()
loss.backward()
# netpNorm, netgradNorm = getGradNorm(model)
if opt.grad_clip is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
optimizer.step()
if opt.use_ema:
update_ema(ema, model)
if not opt.debug:
global_step = i + len(dataloader) * epoch
if opt.use_tb:
tb_writer.add_scalar('train_loss', loss.item(), global_step)
tb_writer.add_scalar('train_lr', optimizer.param_groups[0]['lr'], global_step)
if i % opt.print_freq == 0 and should_diag:
logger.info('[{:>3d}/{:>3d}][{:>3d}/{:>3d}] loss: {:>10.4f}, '
.format(
epoch, opt.niter, i, len(dataloader),loss.item()
))
if (epoch + 1) % opt.diagIter == 0 and should_diag:
logger.info('Diagnosis:')
x_range = [x.min().item(), x.max().item()]
kl_stats = model.all_kl(x, y)
logger.info(' [{:>3d}/{:>3d}] '
'x_range: [{:>10.4f}, {:>10.4f}], '
'total_bpd_b: {:>10.4f}, '
'terms_bpd: {:>10.4f}, '
'prior_bpd_b: {:>10.4f} '
'mse_bt: {:>10.4f} '
.format(
epoch, opt.niter,
*x_range,
kl_stats['total_bpd_b'].item(),
kl_stats['terms_bpd'].item(), kl_stats['prior_bpd_b'].item(), kl_stats['mse_bt'].item()
))
if not opt.debug:
if opt.use_tb:
tb_writer.add_scalar('total_bpd_b', kl_stats['total_bpd_b'].item(), epoch)
tb_writer.add_scalar('terms_bpd', kl_stats['terms_bpd'].item(), epoch)
tb_writer.add_scalar('prior_bpd_b', kl_stats['prior_bpd_b'].item(), epoch)
tb_writer.add_scalar('mse_bt', kl_stats['mse_bt'].item(), epoch)
if (epoch + 1) % opt.vizIter == 0 and should_diag:
logger.info('Generation: eval')
model.eval()
with torch.no_grad():
x_gen_eval = model.gen_samples(new_x_chain(x, 25).shape, x.device, new_y_chain(y,25,opt.num_classes), clip_denoised=False)
x_gen_list = model.gen_sample_traj(new_x_chain(x, 1).shape, x.device, new_y_chain(y,1,opt.num_classes), freq=40, clip_denoised=False)
x_gen_all = torch.cat(x_gen_list, dim=0)
gen_stats = [x_gen_eval.mean(), x_gen_eval.std()]
gen_eval_range = [x_gen_eval.min().item(), x_gen_eval.max().item()]
logger.info(' [{:>3d}/{:>3d}] '
'eval_gen_range: [{:>10.4f}, {:>10.4f}] '
'eval_gen_stats: [mean={:>10.4f}, std={:>10.4f}] '
.format(
epoch, opt.niter,
*gen_eval_range, *gen_stats,
))
visualize_pointcloud_batch('%s/epoch_%03d_samples_eval.png' % (outf_syn, epoch),
x_gen_eval.transpose(1, 2), None, None,
None)
visualize_pointcloud_batch('%s/epoch_%03d_samples_eval_all.png' % (outf_syn, epoch),
x_gen_all.transpose(1, 2), None,
None,
None)
visualize_pointcloud_batch('%s/epoch_%03d_x.png' % (outf_syn, epoch), x.transpose(1, 2), None,
None,
None)
logger.info('Generation: train')
model.train()
if (epoch + 1) % opt.saveIter == 0:
if should_diag:
save_dict = {
'epoch': epoch,
'model_state': model.state_dict(),
'optimizer_state': optimizer.state_dict()
}
if opt.use_ema:
save_dict.update({'ema': ema.state_dict()})
torch.save(save_dict, '%s/epoch_%d.pth' % (output_dir, epoch))
if opt.distribution_type == 'multi':
dist.barrier()
map_location = {'cuda:%d' % 0: 'cuda:%d' % gpu}
if opt.use_ema:
checkpoint = torch.load('%s/epoch_%d.pth' % (output_dir, epoch), map_location=map_location)['ema']
checkpoint_dict = {k.replace('model.', 'model.module.'): checkpoint[k] for k in checkpoint if k.startswith('model.')}
model.load_state_dict(checkpoint_dict)
else:
model.load_state_dict(
torch.load('%s/epoch_%d.pth' % (output_dir, epoch), map_location=map_location)['model_state'])
dist.destroy_process_group()
def main():
opt = parse_args()
if opt.category == 'airplane':
opt.beta_start = 1e-5
opt.beta_end = 0.008
opt.schedule_type = 'warm0.1'
output_dir = get_output_dir(opt.model_dir, opt.experiment_name)
copy_source(__file__, output_dir)
''' workaround '''
train_dataset, _ = get_dataset(opt.dataroot, opt.npoints, opt.category)
noises_init = torch.randn(len(train_dataset), opt.npoints, opt.nc)
# Use random port to avoid collision between parallel jobs
if opt.world_size == 1:
opt.port = np.random.randint(10000, 20000)
opt.dist_url = f'tcp://{opt.node}:{opt.port}'
print('Using url {}'.format(opt.dist_url))
if opt.distribution_type == 'multi':
opt.ngpus_per_node = torch.cuda.device_count()
opt.world_size = opt.ngpus_per_node * opt.world_size
mp.spawn(train, nprocs=opt.ngpus_per_node, args=(opt, output_dir, noises_init))
else:
train(opt.gpu, opt, output_dir, noises_init)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default='./checkpoints', help='path to save trained model weights')
parser.add_argument('--experiment_name', type=str, default='dit3d', help='experiment name (used for checkpointing and logging)')
# Data params
parser.add_argument('--dataroot', default='ShapeNetCore.v2.PC15k/')
parser.add_argument('--category', default='chair')
parser.add_argument('--num_classes', type=int, default=55)
parser.add_argument('--bs', type=int, default=16, help='input batch size')
parser.add_argument('--workers', type=int, default=16, help='workers')
parser.add_argument('--niter', type=int, default=10000, help='number of epochs to train for')
parser.add_argument('--nc', default=3)
parser.add_argument('--npoints', default=2048)
parser.add_argument("--voxel_size", type=int, choices=[16, 32, 64, 128, 256], default=32)
'''model'''
parser.add_argument("--model_type", type=str, choices=list(DiT3D_models.keys()), default="DiT-XL/2")
parser.add_argument('--beta_start', default=0.0001)
parser.add_argument('--beta_end', default=0.02)
parser.add_argument('--schedule_type', default='linear')
parser.add_argument('--time_num', type=int, default=1000)
#params
parser.add_argument('--window_size', type=int, default=0)
parser.add_argument('--window_block_indexes', type=tuple, default='0,3,6,9')
parser.add_argument('--attention', default=True)
parser.add_argument('--dropout', default=0.1)
parser.add_argument('--embed_dim', type=int, default=64)
parser.add_argument('--loss_type', default='mse')
parser.add_argument('--model_mean_type', default='eps')
parser.add_argument('--model_var_type', default='fixedsmall')
parser.add_argument('--lr', type=float, default=2e-4, help='learning rate for E, default=0.0002')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--decay', type=float, default=0, help='weight decay for EBM')
parser.add_argument('--grad_clip', type=float, default=None, help='weight decay for EBM')
parser.add_argument('--lr_gamma', type=float, default=0.998, help='lr decay for EBM')
parser.add_argument('--model', default='', help="path to model (to continue training)")
'''distributed'''
parser.add_argument('--world_size', default=1, type=int,
help='Number of distributed nodes.')
parser.add_argument('--node', type=str, default='localhost')
parser.add_argument('--port', type=int, default=12345)
parser.add_argument('--dist_url', type=str, default='tcp://localhost:12345')
parser.add_argument('--dist_backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--distribution_type', default='single', choices=['multi', 'single', None],
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use. None means using all available GPUs.')
'''eval'''
parser.add_argument('--saveIter', default=100, type=int, help='unit: epoch')
parser.add_argument('--diagIter', default=50000, type=int, help='unit: epoch')
parser.add_argument('--vizIter', default=50000, type=int, help='unit: epoch')
parser.add_argument('--print_freq', default=50, type=int, help='unit: iter')
parser.add_argument('--manualSeed', default=42, type=int, help='random seed')
parser.add_argument('--debug', action='store_true', default=False, help = 'debug mode')
parser.add_argument('--use_tb', action='store_true', default=False, help = 'use tensorboard')
parser.add_argument('--use_pretrained', action='store_true', default=False, help = 'use pretrained 2d DiT weights')
parser.add_argument('--use_ema', action='store_true', default=False, help = 'use ema')
opt = parser.parse_args()
return opt
if __name__ == '__main__':
main()