-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsetup.py
122 lines (109 loc) · 4.25 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from setuptools import setup, Extension
from setuptools.command.build_ext import build_ext as _build_ext
from setuptools.command.sdist import sdist as _sdist
from distutils.command.clean import clean as _clean
from distutils.errors import CompileError
from warnings import warn
import os
import sys
from glob import glob
import tarfile
import shutil
from urllib.request import urlretrieve
# use cython if we can import it successfully
try:
from Cython.Distutils import build_ext as _build_ext
except ImportError:
use_cython = False
else:
use_cython = True
# wrap the build_ext command to handle numpy bootstrap and compilation errors
class build_ext(_build_ext):
# see http://stackoverflow.com/q/19919905 for explanation
def finalize_options(self):
_build_ext.finalize_options(self)
__builtins__.__NUMPY_SETUP__ = False
import numpy as np
self.include_dirs.append(np.get_include())
# if extension modules fail to build, keep going anyway
def run(self):
try:
_build_ext.run(self)
except CompileError:
warn('Failed to build extension modules')
import traceback
print(traceback.format_exc(), file=sys.stderr)
# wrap the sdist command to try to generate cython sources
class sdist(_sdist):
def run(self):
try:
from Cython.Build import cythonize
cythonize(os.path.join('pyhlm','**','*.pyx'), compiler_directives={'language_level' : "3"})
except:
warn('Failed to generate extension files from Cython sources')
finally:
_sdist.run(self)
# wrap the clean command to remove object files
class clean(_clean):
def run(self):
try:
for f in glob(os.path.join('pyhlm','**','*.so')): # not recursive before Python 3.5
os.remove(f)
except:
warn('Failed to remove all object files')
finally:
_clean.run(self)
# make dependency directory
if not os.path.exists('deps'):
os.mkdir('deps')
# download Eigen if we don't have it in deps
eigenurl = 'http://bitbucket.org/eigen/eigen/get/3.2.6.tar.gz'
eigentarpath = os.path.join('deps', 'Eigen.tar.gz')
eigenpath = os.path.join('deps', 'Eigen')
if not os.path.exists(eigenpath):
print('Downloading Eigen...')
urlretrieve(eigenurl, eigentarpath)
with tarfile.open(eigentarpath, 'r') as tar:
tar.extractall('deps')
thedir = glob(os.path.join('deps', 'eigen-eigen-*'))[0]
shutil.move(os.path.join(thedir, 'Eigen'), eigenpath)
print('...done!')
# make a list of extension modules
extension_pathspec = os.path.join('pyhlm','**','*.pyx') # not recursive before Python 3.5
paths = [os.path.splitext(fp)[0] for fp in glob(extension_pathspec)]
names = ['.'.join(os.path.split(p)) for p in paths]
with open("requirements.txt", "r") as f:
requirements = list(f.readlines())
ext_modules = [
Extension(
name, sources=[path + '.cpp'],
include_dirs=['deps'],
extra_compile_args=['-O3','-std=c++11','-DNDEBUG','-w','-DHLM_TEMPS_ON_HEAP'])
for name, path in zip(names,paths)]
# if using cython, rebuild the extension files from the .pyx sources
if use_cython:
from Cython.Build import cythonize
try:
ext_modules = cythonize(extension_pathspec, compiler_directives={'language_level' : "3"})
except:
warn('Failed to generate extension module code from Cython files')
# put it all together with a call to setup()
setup(name='pyhlm',
version='1.0.3',
description="Bayesian inference in HLMs",
author='Ryo Ozaki',
author_email='[email protected]',
url="https://github.com/RyoOzaki/npbdaa",
license='MIT',
packages=['pyhlm', 'pyhlm.internals', 'pyhlm.util'],
platforms='ALL',
keywords=['bayesian', 'inference', 'mcmc', 'time-series', 'monte-carlo',
'double articulation', 'hierarchical Dirichlet process hidden language model'],
install_requires=requirements,
setup_requires=['numpy', "future", "six"],
ext_modules=ext_modules,
classifiers=[
'Intended Audience :: Science/Research',
'Programming Language :: Python',
'Programming Language :: C++'],
cmdclass={'build_ext': build_ext, 'sdist': sdist, 'clean': clean})