-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtraining.py
115 lines (98 loc) · 3.3 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import glob
import os
import sys
import cv2
import numpy as np
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.layers.core import Activation, Dense, Dropout, Flatten
from keras.models import Sequential, load_model
from keras.optimizers import SGD
from keras.utils import np_utils
def get_im(path):
"""Prepare img."""
img = cv2.imread(path, 0)
# Reduce size
resized = cv2.resize(img, (128, 128))
# resized = resized.transpose()
return resized
def _save_to_csv(filename, value_dict):
with open('{}'.format(filename), 'w') as csv_file:
for key, value in value_dict.items():
csv_file.write('{};{}\n'.format(key, value))
def _load_from_csv(filename):
value_dict = {}
with open('{}'.format(filename), 'r') as csv_file:
for row in csv_file.readlines():
data = row.split(';')
value_dict[data[0]] = int(data[1].replace('\n', ''))
return value_dict
def create_model():
"""Create keras model."""
model = Sequential()
model.add(Conv2D(32, (3, 3),
padding='valid',
input_shape=(128, 128, 1)))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(32, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(32))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(len(categories) + 1))
model.add(Activation('sigmoid'))
sgd = SGD(lr=1e-6, momentum=0.9)
model.compile(loss='binary_crossentropy', optimizer=sgd,
metrics=['accuracy'])
return model
try:
epochs = int(sys.argv[1])
except Exception:
epochs = 1
categories = set()
data_files = []
print("scan files...")
for path, subdirs, files in os.walk('dataset'):
for name in files:
cat = path.split('/')[-1]
categories.add(cat)
data_files.append((os.path.join(path, name), cat))
print('total files: {}'.format(len(data_files)))
print('total categories: {}'.format(len(categories)))
tokenizer_categories = {}
if glob.glob('tokenizer_categories.csv'):
tokenizer_categories = _load_from_csv('tokenizer_categories.csv')
else:
for i, value in enumerate(categories):
tokenizer_categories[value] = i + 1
_save_to_csv('tokenizer_categories.csv', tokenizer_categories)
print(tokenizer_categories)
X_train = []
y_train = []
for data in data_files:
filepath = data[0]
category = data[1]
X_train.append(get_im(filepath))
y_train.append(tokenizer_categories[category])
X_train = np.array(X_train, dtype=np.uint8)
X_train = X_train.reshape(X_train.shape[0], 128, 128, 1)
y_train = np.array(y_train, dtype=np.uint8)
y_train = np_utils.to_categorical(y_train, len(categories) + 1)
print(X_train.shape)
print(y_train.shape)
if glob.glob('neuron_webcam.h5'):
model = load_model('neuron_webcam.h5')
else:
model = create_model()
# model.summary()
model.fit(X_train, y_train, batch_size=32, epochs=epochs)
# validation_data=(X_train, y_train))
model.save('neuron_webcam.h5', overwrite=True)