-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbattle_simulation.py
324 lines (255 loc) · 9.83 KB
/
battle_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import battle_royale as b
import machine as m
import networkagent as n
import pandas as pd
# import networkagent as n
import matplotlib.pyplot as plt
from tensorflow.keras.models import load_model
from tensorflow.keras.backend import clear_session
from generate_delay import WeibullDelayGenerator
import time
r_s = list()
x_s = list()
lt_wr = list()
lt_lr = list()
prev_alpha = 0.0
prev_epsilon = 0.0
learning_agent_positions = list()
enemy1_positions = list()
enemy2_positions = list()
actions = list()
fitting_losses = list()
M=0
for k in range(1, 2, 1): #[20,50,100,200,300,325,375,400,500]:
# gen = WeibullDelayGenerator(seed=1,m=M,d=k)
def delay():
# return gen.generate_weibulldist_delay()
return 0
df = pd.DataFrame()
N = 100
ALPHA = prev_alpha
EPSILON = prev_epsilon # = 2.0 disables q-updates for faster fully random
ALPHA_DECAY = 0.999975 #0.999975
EPSILON_DECAY = 0.999995
INTERVAL = 20 # episodes
start = time.time()
a1 = n.NetworkAgent(None,"A",epsilon=EPSILON,alpha=ALPHA,decay_alpha=ALPHA_DECAY,decay_epsilon=EPSILON_DECAY, is_tab=False)
a2 = n.NetworkAgent(None,"B",epsilon=EPSILON,alpha=ALPHA,decay_alpha=ALPHA_DECAY,decay_epsilon=EPSILON_DECAY, is_heuristic=True)
a3 = n.NetworkAgent(None,"C",epsilon=EPSILON,alpha=ALPHA,decay_alpha=ALPHA_DECAY,decay_epsilon=EPSILON_DECAY, is_heuristic=True)
agents = [a1,a2,a3]
# print(time.time() - start, a1.time_in_inference)
# print(a1.times_used_cached, a1.times_used_model)
w1 = b.BattleRoyale(agents)
w2 = b.BattleRoyale(agents)
w3 = b.BattleRoyale(agents)
a1.world = w1
a2.world = w2
a3.world = w3
print(a1.world.action_count)
m1 = m.Machine(a1,a1.name)
m2 = m.Machine(a2,a2.name)
m3 = m.Machine(a3,a3.name)
machines = [m1,m2,m3]
c1_2 = m.Connection(m1,m2,delay)
c1_3 = m.Connection(m1,m3,delay)
m1.add_connection(m2,c1_2)
m1.add_connection(m3,c1_3)
c2_1 = m.Connection(m2,m1,delay)
c2_3 = m.Connection(m2,m3,delay)
m2.add_connection(m1,c2_1)
m2.add_connection(m3,c2_3)
c3_1 = m.Connection(m3,m1,delay)
c3_2 = m.Connection(m3,m2,delay)
m3.add_connection(m1,c3_1)
m3.add_connection(m2,c3_2)
try:
# a1.value_approximator.model = load_model(f"model/NOV17DISTANCED{k-1}")
a1.value_approximator.model = load_model("model/DEC14")
except:
print("\n\n\n\n!!!Error loading model!!!\n\n\n\n")
# # a2.value_approximator.model = load_model(f"model/F22SEP30SMALLBRAINROUND{66+k-1}FINALB")
# a3.value_approximator.model = load_model(f"model/F22SEP30SMALLBRAINROUND{66+k-1}FINALC")
a1.has_model = True
a2.has_model = True
a3.has_model = True
master_model = a1.value_approximator.model
a2.value_approximator.model = master_model
a3.value_approximator.model = master_model
master_cache = a1.q_values
a2.q_values = master_cache
a3.q_values = master_cache
# print(len(master_cache))
# print(master_model.get_weights())
x = list()
y = list()
y_r =list()
w_s = list()
l_s = list()
avg_t = 0
avg_r = 0
avg_wr = 0
avg_lr = 0
interval = INTERVAL
for i in range(1,N+1,1):
# print(i)
quit = False
t = 0
prev_reward = 0
# while(t<(10*interval*(N+i)/N) and not quit):
while(t<30*400 and not quit):
for machine in machines:
a, r = machine.activate(t)
# print('REWARD:', r, 'AGENT:', machine.agent.name)
if machine == m1 and r >= 500:
avg_wr += 1
if machine == m1 and a1.reward - prev_reward <= -400:
avg_lr += 1
prev_reward = a1.reward
# if machine == m1:
# print("CURRENT POSITION/ACTION/REWARD:",m1.world.dictionary.get(m1.agent.name), a, m1.agent.reward)
# learning_agent_positions.append(m1.world.dictionary.get(m1.agent.name))
# enemy1_positions.append(m1.world.dictionary.get(m2.agent.name))
# enemy2_positions.append(m1.world.dictionary.get(m3.agent.name))
# actions.append(a)
# df = df.append({'action':a, 'mypos':m1.world.dictionary.get(m1.agent.name), 'enemy1pos':m1.world.dictionary.get(m2.agent.name), 'enemy2pos':m1.world.dictionary.get(m3.agent.name)}, ignore_index=True)
if(machine.world.episode_complete):
quit = True
# ############ STATIC ################
# m1.activate(t)
# if m1.world.episode_complete:
# quit = True
# ####################################
# print(t)
t+=30
avg_t+=t
# for machine in machines:
# avg_r+=machine.agent.reward
avg_r += a1.reward
if i%interval == 0 and i != 0:
x.append(i)
y.append(avg_t/interval)
# y_r.append(avg_r/interval/3)
y_r.append(avg_r/interval)
w_s.append(avg_wr/interval)
l_s.append(avg_lr/interval)
print("Episode number/average match-length/average reward",i,avg_t/interval,avg_r/interval)
print("CACHE LEN", len(master_cache))
print("Epsilon/Alpha", a1.epsilon, a1.alpha)
print("Percentage new states", (a1.new_states)/(a1.total_states))
print("Win ratio:", avg_wr/interval)
print("Loss ratio:", avg_lr/interval)
avg_t = 0
avg_r = 0
avg_wr = 0
avg_lr = 0
# for machine in machines:
# machine.agent.refit_model()
# machine.world.reset(reset_qvalues=True)
# history = m1.agent.refit_model()
# fitting_losses.append(history.history['loss'])
# a1.value_approximator.model.save(f'model/NOV18DISTANCED{k}_temp')
# clear_session()
# a1.value_approximator.model = load_model(f'model/NOV18DISTANCED{k}_temp')
a1.reset(reset_epsilon_to=prev_epsilon if i <= N/4 else 0)
# if (i <= N/5):
# a1.alpha = prev_alpha
m1.world.reset(reset_state_count=True)
m2.world.reset()
m3.world.reset()
# master_cache = a1.q_values
# a2.q_values = master_cache
# a3.q_values = master_cache
# for machine in machines:
# machine.agent.value_approximator.model.save(f"model/F22SEP30SBROUND{66+k}{i}"+machine.name)
# clear_session()
# machine.agent.value_approximator.model = load_model(f"model/F22SEP30SBROUND{66+k}{i}"+machine.name)
# master_model = a1.value_approximator.model
# a2.value_approximator.model = master_model
# a3.value_approximator.model = master_model
for machine in machines:
a = machine.agent
a.epsilon *= a.decay_epsilon
a.alpha *= a.decay_alpha
if(a.alpha < 0.01):
a.alpha = 0.01
if i==(N):
prev_alpha = a1.alpha
prev_epsilon = a1.epsilon
# machine.agent.value_approximator.model.save(f"model/F22SEP29ROUND4{i}"+machine.name)
# ############ STATIC ################
# avg_r += m1.agent.reward
# m1.world.reset()
# ####################################
# ############ STATIC ################
# m1.agent.refit_model()
# m1.agent.value_approximator.model.save("model\\TEST"+m1.name)
# ####################################
plt.plot(x,y)
plt.xlabel("Time")
plt.ylabel("Average length of match")
plt.show()
plt.cla()
plt.plot(x,y_r)
plt.xlabel("Time")
plt.ylabel("Average reward for a1")
plt.show()
plt.plot(x, w_s)
plt.xlabel("Time")
plt.ylabel("Average win percent for a1")
plt.show()
plt.cla()
plt.plot(x, l_s)
plt.xlabel("Time")
plt.ylabel("Average loss percent for a1")
plt.show()
plt.cla()
# plt.savefig(f"round{66+k}.png")
# df = pd.DataFrame(list(zip(actions, learning_agent_positions, enemy1_positions, enemy2_positions)), columns=['action', 'agent_pos', 'enemy1_pos', 'enemy2_pos'])
# df.to_csv(f'ACTIONS_NOV17DISTANCED_{k}.csv', index=False)
print()
print("EXPERIMENT COMPLETE")
print("Iteration", k)
# print("Percentage new states", a1.new_states/a1.total_states)
print("Overall time versus time spent in inference", time.time() - start, a1.time_in_inference)
print("Action counts", a1.world.action_count)
print("Times used cache/used model", a1.times_used_cached, a1.times_used_model)
print("Win ratio", sum(w_s)/len(w_s))
print("Loss ratio", sum(l_s)/len(l_s))
# print("Win ratio", sum(y_r)/len(y_r))
# a1.save_memories()
# a1.refit_based_on_memories()
# a1.refit_model()
# a1.value_approximator.model.save("model/DEC14")
lt_wr.append(sum(w_s)/len(w_s))
lt_lr.append(sum(l_s)/len(l_s))
r_s.append(sum(y_r)/len(y_r))
x_s.append(k)
# # print(master_model.get_weights())
# for machine in machines:
# machine.agent.value_approximator.model.save(f"model/F22SEP30SMALLBRAINROUND{66+k}FINAL"+machine.name)
# machine.agent.value_approximator.model.save(f"model/NOV17DISTANCED{k}")
plt.cla()
plt.plot(x_s,r_s)
# print(sum(r_s)/len(r_s))
plt.xlabel("Round")
# plt.xlabel(f"d (m={M})")
plt.ylabel("Average reward for a1")
plt.show()
plt.cla()
plt.plot(x_s,lt_wr)
plt.xlabel("Round")
# plt.xlabel(f"d (m={M})")
plt.ylabel("Average win-ratio for a1")
plt.show()
plt.cla()
plt.plot(x_s,lt_lr)
plt.xlabel("Round")
# plt.xlabel(f"d (m={M})")
plt.ylabel("Average loss-ratio for a1")
plt.show()
plt.cla()
plt.plot([i for i in range(len(fitting_losses))],fitting_losses)
plt.xlabel("Round")
# plt.xlabel(f"d (m={M})")
plt.ylabel("Model fitting loss for a1")
plt.show()