Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Using Vector(LinRange(0, Lmax, Lmax+1)) inside a function to be differentiated causes a core dumped error #2267

Open
kdaning opened this issue Jan 17, 2025 · 0 comments

Comments

@kdaning
Copy link

kdaning commented Jan 17, 2025

I’m differentiating a function calculateDifferentialCrossSection() with respect to the parameters of a neural network. I’m getting a “core dumped” error when passing a parameter Lmax to the function which is then passed to Vector(LinRange(0, Lmax, Lmax+1)) inside that function. For some reason, bringing Vector(LinRange(0, Lmax, Lmax+1)) outside the function and passing the full vector to it instead of Lmax solved this problem.

I’m running on Julia 1.10.6.

# Test coreloop diff with Enzyme

begin # Packages
    using SpecialFunctions
    using BenchmarkTools
    using SphericalHarmonics
    using Enzyme
    using Flux
    using CGcoefficient
end
CGcoefficient.wigner_init_float(14, "Jmax", 6)

# set global constants
begin
    const global amu = 931.4943335
    const global mun = 1.008664891*amu      # Neutron mass
    const global muz = 1.007276487*amu      # Proton mass
    const global ħ = 197.3269804            # fm-MeV
    const global pion = 134.9768            # pion mass
    const global pi = 3.14159
end

begin # Functions
    # Coulomb funcs
    function GL(k, r, L)
        return -k*r*sphericalbessely(L, k*r)
    end
    function FL(k, r, L)
        return k*r*sphericalbesselj(L, k*r)
    end 

    # Spherical Hankel functions
    function Hminus(k, r, L)
        return complex(GL(k, r, L), -FL(k, r, L))
    end
    function Hplus(k, r, L)
        return complex(GL(k, r, L), FL(k, r, L))
    end

    # Derivatives
    enzR_Hminusprime(k, r, L) =
        complex(Enzyme.gradient(Reverse, x -> GL(k, x, L), r)[1], -Enzyme.gradient(Reverse, x -> FL(k, x, L), r)[1])
    enzR_Hplusprime(k, r, L) =
        complex(Enzyme.gradient(Reverse, x -> GL(k, x, L), r)[1], Enzyme.gradient(Reverse, x -> FL(k, x, L), r)[1])

    enzF_Hminusprime(k, r, L) =
        complex(Enzyme.gradient(Forward, x -> GL(k, x, L), r)[1], -Enzyme.gradient(Forward, x -> FL(k, x, L), r)[1])
    enzF_Hplusprime(k, r, L) =
        complex(Enzyme.gradient(Forward, x -> GL(k, x, L), r)[1], Enzyme.gradient(Forward, x -> FL(k, x, L), r)[1])

    function calculateEcm(E, N, Z)
        return E*(mun*N + muz*Z) / ((N + 1)*mun + muz*Z)
    end

    function calculateMu(N, Z)
        return (N*mun + Z*muz)*mun/(N*mun + Z*muz + mun)    # assumes neutron reactions
    end

    function calculateK(μ, Ecm)
        return sqrt(2*Ecm*μ)/ħ
    end
    
    function build_model(n_in, n_out, n_layers, n_nodes, act_fun=relu, last_fun=relu)
        first_layer = Flux.Dense(n_in, n_nodes, act_fun)
        # hidden_layers = [Flux.Dense(n_in => n_nodes, act_fun) for _ in 1:n_layers-1]
        last_layer = Flux.Dense(n_nodes => n_out)
        m = Chain(first_layer, Flux.Dense(n_nodes => n_nodes, act_fun), Flux.Dense(n_nodes => n_nodes, act_fun),
            Flux.Dense(n_nodes => n_nodes, act_fun), Flux.Dense(n_nodes => n_nodes, act_fun), last_layer) |> f64
        return m
    end

    function eval_model(m, x)
        # x_eval = convert(Array{Float32}, normalize_to_existing(x, tx))
        # x_eval = normalize_to_existing(x, tx)
        # println("x_eval: " * string(x_eval))
        X = m(x)
        # Z = denormalize_data(M, ty)
        return X
    end

    # Combine x with r for use by neural network
    function combex(x, r)
        xlen = size(x)[1]
        rlen = size(r)[1]
        X = zeros(eltype(x), xlen*rlen, size(x)[2]+1)
        for i in 1:1:xlen
            X[(i-1)*rlen+1:i*rlen, 1] = r
            for j in (i-1)*rlen+1:1:i*rlen
                X[j, 2:end] = x[i,:]
            end
        end
        return X'
    end

    # Other needed funcs
    function calculateCG(j1, m1, j2, m2, j3, m3)
        dj1, dj2, dj3, dm1, dm2, dm3 = all_doubles(j1, j2, j3, m1, m2, m3)
        cg = CGcoefficient.fCG(dj1, dj2, dj3, dm1, dm2, dm3)
        return cg
    end

    function double_hint(j)
        dj = Int(2*j)
    end
    
    function all_doubles(j1, j2, j3, m1, m2, m3)
        dj1, dj2, dj3, dm1, dm2, dm3 = double_hint(j1), double_hint(j2), double_hint(j3), double_hint(m1), double_hint(m2), double_hint(m3)
        return dj1, dj2, dj3, dm1, dm2, dm3
    end
end

begin # Functions to differentiate
    # Core loop
    function CalculateSL(U, L, μ, k, r, Ecm)
        dr = r[2] - r[1]
        len = size(r)[1]-1
        ur1, ur2, ur3 = 0.0, 0.0, 0.0
        ui1, ui2, ui3 = 0.0, 0.0, 0.0
        dur1, dur2, dur3 = 0.0, 0.0, 0.0
        dui1, dui2, dui3 = 0.0, 0.0, 0.0
        a = r[end-2]
        ur2 = 1e-6
        ui1 = 1e-12  # ideally these are all always Float32, or all always Float64
        ui2 = 1e-6
        for i in 3:len
            vreal = Ecm - U[i,1]
            vimag = -U[i,2]
            w = 2*μ/ħ^2*complex(vreal, vimag) - L*(L+1)/r[i]^2
            vreal = Ecm -U[i-1,1]
            vimag = -U[i-1,2]
            wmo = 2*μ/ħ^2*complex(vreal, vimag) - L*(L+1)/r[i]^2
            vreal = Ecm - U[i+1,1]
            vimag = -U[i+1,2]
            wpo = 2*μ/ħ^2*complex(vreal, vimag) - L*(L+1)/r[i]^2
            uval = (2*complex(ur2,ui2)-complex(ur1,ui1)-(dr^2/12)*(10*w*complex(ur2,ui2)+wmo*complex(ur1,ui1)))/(1+(dr^2/12)*wpo)
            
            ur3 = real.(uval)
            dur3 = 0.5*(ur3-ur1)/dr
            ui3 = imag.(uval)
            dui3 = 0.5*(ui3-ui1)/dr
    
            ur1, ur2 = ur2, ur3
            dur1, dur2 = dur2, dur3
            ui1, ui2 = ui2, ui3
            dui1, dui2 = dui2, dui3
        end
        ua = complex(ur2,ui2)
        dua = complex(dur3,dui3)
        
        RL = ua / dua
        # SLtop = Hminus(k, a, L) - RL*enzR_Hminusprime(k, a, L)
        # SLbot = Hplus(k, a, L) - RL*enzR_Hplusprime(k, a, L)
        SLtop = Hminus(k, a, L) - RL*enzF_Hminusprime(k, a, L)
        SLbot = Hplus(k, a, L) - RL*enzF_Hplusprime(k, a, L)
    
        SL = SLtop/SLbot
        return [real(SL), imag(SL)]
    end

    # S matrix
    function calculateSMatrix(U, Lrange, μ, k, r, Ecm)
        SLR = zeros(eltype(U), size(Lrange))
        SLI = zeros(eltype(U), size(Lrange))
        for L in Lrange
            i = Int(L+1)
            SLR[i], SLI[i] = CalculateSL(U, L, μ, k, r, Ecm)
        end
        return SLR, SLI
    end

    function calculateDifferentialCrossSection(A, Z, E, U, r, dr, theta, Lmax)
        # Secondary calcs
        N = A - Z
        Ecm = calculateEcm(E, N, Z)
        μ = calculateMu(N, Z)
        k = calculateK(μ, Ecm)
        Lrange = Vector(LinRange(0, Lmax, Lmax+1))

        # S matrix
        SLR, SLI = calculateSMatrix(U, Lrange, μ, k, r, Ecm)
        mi = 0
        imag1 = complex(0, 1)
        TR = zeros(eltype(U), size(Lrange)[1],2,2)
        TI = zeros(eltype(U), size(Lrange)[1],2,2)
        thetaRad = theta*pi/180
        dxsSO = zeros(eltype(U), size(thetaRad)[1], 2)
        ki = 1
        for upi in LinRange(-0.5, 0.5, 2)
            up = upi
            uti = 0
            ut = uti
            mpi = upi
            mtot = upi + uti
            mp = mtot - ut
            global m = mp - up
            for L in Lrange
                L = Int(L)
                if L == 0
                    Jp = L + 0.5
                    Jtot = Jp
                    if abs(upi)<=Jp && abs(uti+uti)<=Jtot && abs(upi+uti-ut-up)<=L && abs(upi+uti-ut)<=Jp
                        cg1 = calculateCG(L,mi,0.5,upi,Jp,mpi)
                        cg2 = calculateCG(Jp,mpi,0.0,uti,Jtot,mtot)
                        cg3 = calculateCG(L,m,0.5,up,Jp,mp)
                        cg4 = calculateCG(Jp,mp,0.0,ut,Jtot,mtot)
                        CGALL = cg1*cg2*cg3*cg4
                        temp = (imag1*sqrt(pi)/k)*CGALL*(1-complex(SLR[L+1],SLI[L+1]))*sqrt(2*L+1)
                        TR[L+1,1,ki] = real(temp)
                        TI[L+1,1,ki] = imag(temp)
                    else
                        TR[L+1,1,ki] = 0.
                        TI[L+1,1,ki] = 0.
                    end
                else
                    count = 1
                    for Jp in LinRange(L-0.5, L+0.5, 2)
                        Jtot = Jp
                        if abs(upi)<=Jp && abs(upi+uti)<=Jtot && abs(upi+uti-ut-up)<=L && abs(upi+uti-ut)<=Jp
                            cg1 = calculateCG(L,mi,0.5,upi,Jp,mpi)
                            cg2 = calculateCG(Jp,mpi,0.0,uti,Jtot,mtot)
                            cg3 = calculateCG(L,m,0.5,up,Jp,mp)
                            cg4 = calculateCG(Jp,mp,0.0,ut,Jtot,mtot)
                            CGALL = cg1*cg2*cg3*cg4
                            temp = (imag1*sqrt(pi)/k)*CGALL*(1-complex(SLR[L+1],SLI[L+1]))*sqrt(2*L+1)
                            TR[L+1,count,ki] = real(temp)
                            TI[L+1,count,ki] = imag(temp)
                        else
                            TR[L+1,count,ki] = 0.
                            TI[L+1,count,ki] = 0.
                        end
                        count += 1
                    end
                end
            end
            ki = ki+1
        end
        num_angs = size(theta)[1]
        fn = zeros(Complex, num_angs, Lmax+1, 2)
        for i in 1:1:num_angs
            SH = SphericalHarmonics.computeYlm(thetaRad[i], 0, lmax=Lmax)
            # Do a sum over the appropriate elements of SH and multiply by TR, TI
            for j in 1:1:Lmax+1
                L = Int(Lrange[j])
                for ki in 1:2
                    fn[i, j, ki] = SH[(L,Int(m))]*complex(TR[L+1,1,ki]+TR[L+1,2,ki] , TI[L+1,1,ki]+TI[L+1,2,ki])
                end
            end
        end
        for ki in 1:2
            dxsSO[:,ki] = abs.(sum(fn[:,:,ki],dims=2)).^2
        end
        dxsSO_return = 5 .*sum(dxsSO,dims=2)
        return dxsSO_return
    end
end

# Set up particular scattering problem
A = 65.
Z = 29.
N = A - Z
E = 10.
L = 14
Lrange = Vector(LinRange(0, L, L+1))
r = Vector(LinRange(0, 20, 2000))
dr = r[2] - r[1]
theta = Vector(LinRange(10, 170, 20))

# Model
x = [A Z E]
X = combex(x, r)
m = build_model(4, 2, 4, 16)
params, re = Flux.destructure(m)

# Derivative of differential cross section wrt NN parameters
Enzyme.jacobian(set_runtime_activity(Reverse), p -> calculateDifferentialCrossSection(A, Z, E, eval_model(re(p), X)', r, dr, theta, L), params)

Error message:

julia> include("coredump.jl")
julia: /workspace/srcdir/Enzyme/build/Enzyme/CallDerivatives.inc:1785: bool AdjointGenerator::handleKnownCallDerivatives(llvm::CallInst&, llvm::Function*, llvm::StringRef, const std::vector<bool>&, llvm::CallInst*): Assertion `gutils->isConstantValue(call.getOperand(0))' failed.

[1955881] signal (6.-6): Aborted
in expression starting at /vast/home/daningburg/nuclear-diffprog/MWEs/coredump.jl:275
gsignal at /lib64/libc.so.6 (unknown line)
abort at /lib64/libc.so.6 (unknown line)
__assert_fail_base.cold.0 at /lib64/libc.so.6 (unknown line)
__assert_fail at /lib64/libc.so.6 (unknown line)
handleKnownCallDerivatives at /workspace/srcdir/Enzyme/build/Enzyme/CallDerivatives.inc:1785
visitCallInst at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:6278
visit at /opt/x86_64-linux-gnu/x86_64-linux-gnu/sys-root/usr/local/include/llvm/IR/InstVisitor.h:111 [inlined]
CreatePrimalAndGradient at /workspace/srcdir/Enzyme/enzyme/Enzyme/EnzymeLogic.cpp:4305
recursivelyHandleSubfunction at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:5742
visitCallInst at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:6479
visit at /opt/x86_64-linux-gnu/x86_64-linux-gnu/sys-root/usr/local/include/llvm/IR/InstVisitor.h:111 [inlined]
CreatePrimalAndGradient at /workspace/srcdir/Enzyme/enzyme/Enzyme/EnzymeLogic.cpp:4305
recursivelyHandleSubfunction at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:5742
visitCallInst at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:6479
visit at /opt/x86_64-linux-gnu/x86_64-linux-gnu/sys-root/usr/local/include/llvm/IR/InstVisitor.h:111 [inlined]
CreatePrimalAndGradient at /workspace/srcdir/Enzyme/enzyme/Enzyme/EnzymeLogic.cpp:4305
recursivelyHandleSubfunction at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:5742
visitCallInst at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:6479
visit at /opt/x86_64-linux-gnu/x86_64-linux-gnu/sys-root/usr/local/include/llvm/IR/InstVisitor.h:111 [inlined]
CreatePrimalAndGradient at /workspace/srcdir/Enzyme/enzyme/Enzyme/EnzymeLogic.cpp:4305
EnzymeCreatePrimalAndGradient at /workspace/srcdir/Enzyme/enzyme/Enzyme/CApi.cpp:633
EnzymeCreatePrimalAndGradient at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/api.jl:268
unknown function (ip: 0x1495b42d751e)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
enzyme! at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:1554
#codegen#18938 at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:4436
codegen at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:3239 [inlined]
_thunk at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5288
_thunk at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5288 [inlined]
cached_compilation at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5340 [inlined]
thunkbase at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5451
thunk_generator at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5636
jfptr_thunk_generator_32178 at /vast/home/daningburg/.julia/compiled/v1.10/Enzyme/G1p5n_WrRgF.so (unknown line)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jl_call_staged at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/method.c:540
ijl_code_for_staged at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/method.c:593
get_staged at ./compiler/utilities.jl:123
retrieve_code_info at ./compiler/utilities.jl:135 [inlined]
InferenceState at ./compiler/inferencestate.jl:430
typeinf_edge at ./compiler/typeinfer.jl:920
abstract_call_method at ./compiler/abstractinterpretation.jl:629
abstract_call_gf_by_type at ./compiler/abstractinterpretation.jl:95
abstract_call_known at ./compiler/abstractinterpretation.jl:2087
abstract_call at ./compiler/abstractinterpretation.jl:2169
abstract_call at ./compiler/abstractinterpretation.jl:2162
abstract_call at ./compiler/abstractinterpretation.jl:2354
abstract_eval_call at ./compiler/abstractinterpretation.jl:2370
abstract_eval_statement_expr at ./compiler/abstractinterpretation.jl:2380
abstract_eval_statement at ./compiler/abstractinterpretation.jl:2624
abstract_eval_basic_statement at ./compiler/abstractinterpretation.jl:2913
typeinf_local at ./compiler/abstractinterpretation.jl:3098
typeinf_nocycle at ./compiler/abstractinterpretation.jl:3186
_typeinf at ./compiler/typeinfer.jl:247
typeinf at ./compiler/typeinfer.jl:216
typeinf_ext at ./compiler/typeinfer.jl:1051
typeinf_ext_toplevel at ./compiler/typeinfer.jl:1082
typeinf_ext_toplevel at ./compiler/typeinfer.jl:1078
jfptr_typeinf_ext_toplevel_35741.1 at /vast/home/daningburg/.julia/julia-1.10.6/lib/julia/sys.so (unknown line)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jl_apply at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/julia.h:1982 [inlined]
jl_type_infer at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:394
jl_generate_fptr_impl at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/jitlayers.cpp:504
jl_compile_method_internal at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2481 [inlined]
jl_compile_method_internal at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2368
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2887 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
#17 at /vast/home/daningburg/nuclear-diffprog/MWEs/coredump.jl:275 [inlined]
augmented_julia__17_436wrap at /vast/home/daningburg/nuclear-diffprog/MWEs/coredump.jl:0
macro expansion at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5218 [inlined]
enzyme_call at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:4764 [inlined]
AugmentedForwardThunk at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:4700
unknown function (ip: 0x1495b43543d9)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
#130 at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/sugar.jl:928 [inlined]
macro expansion at ./ntuple.jl:72 [inlined]
ntuple at ./ntuple.jl:69 [inlined]
#jacobian#129 at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/sugar.jl:924
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jacobian at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/sugar.jl:841 [inlined]
#jacobian#129 at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/sugar.jl:856 [inlined]
jacobian at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/sugar.jl:841
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jl_apply at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/julia.h:1982 [inlined]
do_call at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:126
eval_value at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:223
eval_stmt_value at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:174 [inlined]
eval_body at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:617
jl_interpret_toplevel_thunk at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:775
jl_toplevel_eval_flex at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/toplevel.c:934
jl_toplevel_eval_flex at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/toplevel.c:877
ijl_toplevel_eval_in at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/toplevel.c:985
eval at ./boot.jl:385 [inlined]
include_string at ./loading.jl:2076
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
_include at ./loading.jl:2136
include at ./client.jl:494
unknown function (ip: 0x1495b4284185)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jl_apply at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/julia.h:1982 [inlined]
do_call at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:126
eval_value at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:223
eval_stmt_value at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:174 [inlined]
eval_body at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:617
jl_interpret_toplevel_thunk at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:775
jl_toplevel_eval_flex at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/toplevel.c:934
jl_toplevel_eval_flex at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/toplevel.c:877
ijl_toplevel_eval_in at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/toplevel.c:985
eval at ./boot.jl:385 [inlined]
eval_user_input at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/usr/share/julia/stdlib/v1.10/REPL/src/REPL.jl:150
repl_backend_loop at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/usr/share/julia/stdlib/v1.10/REPL/src/REPL.jl:246
#start_repl_backend#46 at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/usr/share/julia/stdlib/v1.10/REPL/src/REPL.jl:231
start_repl_backend at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/usr/share/julia/stdlib/v1.10/REPL/src/REPL.jl:228
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
#run_repl#59 at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/usr/share/julia/stdlib/v1.10/REPL/src/REPL.jl:389
run_repl at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/usr/share/julia/stdlib/v1.10/REPL/src/REPL.jl:375
jfptr_run_repl_91949.1 at /vast/home/daningburg/.julia/julia-1.10.6/lib/julia/sys.so (unknown line)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
#1013 at ./client.jl:437
jfptr_YY.1013_82918.1 at /vast/home/daningburg/.julia/julia-1.10.6/lib/julia/sys.so (unknown line)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jl_apply at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/julia.h:1982 [inlined]
jl_f__call_latest at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/builtins.c:812
#invokelatest#2 at ./essentials.jl:892 [inlined]
invokelatest at ./essentials.jl:889 [inlined]
run_main_repl at ./client.jl:421
exec_options at ./client.jl:338
_start at ./client.jl:557
jfptr__start_82944.1 at /vast/home/daningburg/.julia/julia-1.10.6/lib/julia/sys.so (unknown line)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jl_apply at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/julia.h:1982 [inlined]
true_main at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/jlapi.c:582
jl_repl_entrypoint at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/jlapi.c:731
main at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/cli/loader_exe.c:58
__libc_start_main at /lib64/libc.so.6 (unknown line)
unknown function (ip: 0x4010b8)
Allocations: 111617459 (Pool: 111514608; Big: 102851); GC: 141
Aborted (core dumped)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant