You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I’m differentiating a function calculateDifferentialCrossSection() with respect to the parameters of a neural network. I’m getting a “core dumped” error when passing a parameter Lmax to the function which is then passed to Vector(LinRange(0, Lmax, Lmax+1)) inside that function. For some reason, bringing Vector(LinRange(0, Lmax, Lmax+1)) outside the function and passing the full vector to it instead of Lmax solved this problem.
I’m running on Julia 1.10.6.
# Test coreloop diff with Enzyme
begin # Packages
using SpecialFunctions
using BenchmarkTools
using SphericalHarmonics
using Enzyme
using Flux
using CGcoefficient
end
CGcoefficient.wigner_init_float(14, "Jmax", 6)
# set global constants
begin
const global amu = 931.4943335
const global mun = 1.008664891*amu # Neutron mass
const global muz = 1.007276487*amu # Proton mass
const global ħ = 197.3269804 # fm-MeV
const global pion = 134.9768 # pion mass
const global pi = 3.14159
end
begin # Functions
# Coulomb funcs
function GL(k, r, L)
return -k*r*sphericalbessely(L, k*r)
end
function FL(k, r, L)
return k*r*sphericalbesselj(L, k*r)
end
# Spherical Hankel functions
function Hminus(k, r, L)
return complex(GL(k, r, L), -FL(k, r, L))
end
function Hplus(k, r, L)
return complex(GL(k, r, L), FL(k, r, L))
end
# Derivatives
enzR_Hminusprime(k, r, L) =
complex(Enzyme.gradient(Reverse, x -> GL(k, x, L), r)[1], -Enzyme.gradient(Reverse, x -> FL(k, x, L), r)[1])
enzR_Hplusprime(k, r, L) =
complex(Enzyme.gradient(Reverse, x -> GL(k, x, L), r)[1], Enzyme.gradient(Reverse, x -> FL(k, x, L), r)[1])
enzF_Hminusprime(k, r, L) =
complex(Enzyme.gradient(Forward, x -> GL(k, x, L), r)[1], -Enzyme.gradient(Forward, x -> FL(k, x, L), r)[1])
enzF_Hplusprime(k, r, L) =
complex(Enzyme.gradient(Forward, x -> GL(k, x, L), r)[1], Enzyme.gradient(Forward, x -> FL(k, x, L), r)[1])
function calculateEcm(E, N, Z)
return E*(mun*N + muz*Z) / ((N + 1)*mun + muz*Z)
end
function calculateMu(N, Z)
return (N*mun + Z*muz)*mun/(N*mun + Z*muz + mun) # assumes neutron reactions
end
function calculateK(μ, Ecm)
return sqrt(2*Ecm*μ)/ħ
end
function build_model(n_in, n_out, n_layers, n_nodes, act_fun=relu, last_fun=relu)
first_layer = Flux.Dense(n_in, n_nodes, act_fun)
# hidden_layers = [Flux.Dense(n_in => n_nodes, act_fun) for _ in 1:n_layers-1]
last_layer = Flux.Dense(n_nodes => n_out)
m = Chain(first_layer, Flux.Dense(n_nodes => n_nodes, act_fun), Flux.Dense(n_nodes => n_nodes, act_fun),
Flux.Dense(n_nodes => n_nodes, act_fun), Flux.Dense(n_nodes => n_nodes, act_fun), last_layer) |> f64
return m
end
function eval_model(m, x)
# x_eval = convert(Array{Float32}, normalize_to_existing(x, tx))
# x_eval = normalize_to_existing(x, tx)
# println("x_eval: " * string(x_eval))
X = m(x)
# Z = denormalize_data(M, ty)
return X
end
# Combine x with r for use by neural network
function combex(x, r)
xlen = size(x)[1]
rlen = size(r)[1]
X = zeros(eltype(x), xlen*rlen, size(x)[2]+1)
for i in 1:1:xlen
X[(i-1)*rlen+1:i*rlen, 1] = r
for j in (i-1)*rlen+1:1:i*rlen
X[j, 2:end] = x[i,:]
end
end
return X'
end
# Other needed funcs
function calculateCG(j1, m1, j2, m2, j3, m3)
dj1, dj2, dj3, dm1, dm2, dm3 = all_doubles(j1, j2, j3, m1, m2, m3)
cg = CGcoefficient.fCG(dj1, dj2, dj3, dm1, dm2, dm3)
return cg
end
function double_hint(j)
dj = Int(2*j)
end
function all_doubles(j1, j2, j3, m1, m2, m3)
dj1, dj2, dj3, dm1, dm2, dm3 = double_hint(j1), double_hint(j2), double_hint(j3), double_hint(m1), double_hint(m2), double_hint(m3)
return dj1, dj2, dj3, dm1, dm2, dm3
end
end
begin # Functions to differentiate
# Core loop
function CalculateSL(U, L, μ, k, r, Ecm)
dr = r[2] - r[1]
len = size(r)[1]-1
ur1, ur2, ur3 = 0.0, 0.0, 0.0
ui1, ui2, ui3 = 0.0, 0.0, 0.0
dur1, dur2, dur3 = 0.0, 0.0, 0.0
dui1, dui2, dui3 = 0.0, 0.0, 0.0
a = r[end-2]
ur2 = 1e-6
ui1 = 1e-12 # ideally these are all always Float32, or all always Float64
ui2 = 1e-6
for i in 3:len
vreal = Ecm - U[i,1]
vimag = -U[i,2]
w = 2*μ/ħ^2*complex(vreal, vimag) - L*(L+1)/r[i]^2
vreal = Ecm -U[i-1,1]
vimag = -U[i-1,2]
wmo = 2*μ/ħ^2*complex(vreal, vimag) - L*(L+1)/r[i]^2
vreal = Ecm - U[i+1,1]
vimag = -U[i+1,2]
wpo = 2*μ/ħ^2*complex(vreal, vimag) - L*(L+1)/r[i]^2
uval = (2*complex(ur2,ui2)-complex(ur1,ui1)-(dr^2/12)*(10*w*complex(ur2,ui2)+wmo*complex(ur1,ui1)))/(1+(dr^2/12)*wpo)
ur3 = real.(uval)
dur3 = 0.5*(ur3-ur1)/dr
ui3 = imag.(uval)
dui3 = 0.5*(ui3-ui1)/dr
ur1, ur2 = ur2, ur3
dur1, dur2 = dur2, dur3
ui1, ui2 = ui2, ui3
dui1, dui2 = dui2, dui3
end
ua = complex(ur2,ui2)
dua = complex(dur3,dui3)
RL = ua / dua
# SLtop = Hminus(k, a, L) - RL*enzR_Hminusprime(k, a, L)
# SLbot = Hplus(k, a, L) - RL*enzR_Hplusprime(k, a, L)
SLtop = Hminus(k, a, L) - RL*enzF_Hminusprime(k, a, L)
SLbot = Hplus(k, a, L) - RL*enzF_Hplusprime(k, a, L)
SL = SLtop/SLbot
return [real(SL), imag(SL)]
end
# S matrix
function calculateSMatrix(U, Lrange, μ, k, r, Ecm)
SLR = zeros(eltype(U), size(Lrange))
SLI = zeros(eltype(U), size(Lrange))
for L in Lrange
i = Int(L+1)
SLR[i], SLI[i] = CalculateSL(U, L, μ, k, r, Ecm)
end
return SLR, SLI
end
function calculateDifferentialCrossSection(A, Z, E, U, r, dr, theta, Lmax)
# Secondary calcs
N = A - Z
Ecm = calculateEcm(E, N, Z)
μ = calculateMu(N, Z)
k = calculateK(μ, Ecm)
Lrange = Vector(LinRange(0, Lmax, Lmax+1))
# S matrix
SLR, SLI = calculateSMatrix(U, Lrange, μ, k, r, Ecm)
mi = 0
imag1 = complex(0, 1)
TR = zeros(eltype(U), size(Lrange)[1],2,2)
TI = zeros(eltype(U), size(Lrange)[1],2,2)
thetaRad = theta*pi/180
dxsSO = zeros(eltype(U), size(thetaRad)[1], 2)
ki = 1
for upi in LinRange(-0.5, 0.5, 2)
up = upi
uti = 0
ut = uti
mpi = upi
mtot = upi + uti
mp = mtot - ut
global m = mp - up
for L in Lrange
L = Int(L)
if L == 0
Jp = L + 0.5
Jtot = Jp
if abs(upi)<=Jp && abs(uti+uti)<=Jtot && abs(upi+uti-ut-up)<=L && abs(upi+uti-ut)<=Jp
cg1 = calculateCG(L,mi,0.5,upi,Jp,mpi)
cg2 = calculateCG(Jp,mpi,0.0,uti,Jtot,mtot)
cg3 = calculateCG(L,m,0.5,up,Jp,mp)
cg4 = calculateCG(Jp,mp,0.0,ut,Jtot,mtot)
CGALL = cg1*cg2*cg3*cg4
temp = (imag1*sqrt(pi)/k)*CGALL*(1-complex(SLR[L+1],SLI[L+1]))*sqrt(2*L+1)
TR[L+1,1,ki] = real(temp)
TI[L+1,1,ki] = imag(temp)
else
TR[L+1,1,ki] = 0.
TI[L+1,1,ki] = 0.
end
else
count = 1
for Jp in LinRange(L-0.5, L+0.5, 2)
Jtot = Jp
if abs(upi)<=Jp && abs(upi+uti)<=Jtot && abs(upi+uti-ut-up)<=L && abs(upi+uti-ut)<=Jp
cg1 = calculateCG(L,mi,0.5,upi,Jp,mpi)
cg2 = calculateCG(Jp,mpi,0.0,uti,Jtot,mtot)
cg3 = calculateCG(L,m,0.5,up,Jp,mp)
cg4 = calculateCG(Jp,mp,0.0,ut,Jtot,mtot)
CGALL = cg1*cg2*cg3*cg4
temp = (imag1*sqrt(pi)/k)*CGALL*(1-complex(SLR[L+1],SLI[L+1]))*sqrt(2*L+1)
TR[L+1,count,ki] = real(temp)
TI[L+1,count,ki] = imag(temp)
else
TR[L+1,count,ki] = 0.
TI[L+1,count,ki] = 0.
end
count += 1
end
end
end
ki = ki+1
end
num_angs = size(theta)[1]
fn = zeros(Complex, num_angs, Lmax+1, 2)
for i in 1:1:num_angs
SH = SphericalHarmonics.computeYlm(thetaRad[i], 0, lmax=Lmax)
# Do a sum over the appropriate elements of SH and multiply by TR, TI
for j in 1:1:Lmax+1
L = Int(Lrange[j])
for ki in 1:2
fn[i, j, ki] = SH[(L,Int(m))]*complex(TR[L+1,1,ki]+TR[L+1,2,ki] , TI[L+1,1,ki]+TI[L+1,2,ki])
end
end
end
for ki in 1:2
dxsSO[:,ki] = abs.(sum(fn[:,:,ki],dims=2)).^2
end
dxsSO_return = 5 .*sum(dxsSO,dims=2)
return dxsSO_return
end
end
# Set up particular scattering problem
A = 65.
Z = 29.
N = A - Z
E = 10.
L = 14
Lrange = Vector(LinRange(0, L, L+1))
r = Vector(LinRange(0, 20, 2000))
dr = r[2] - r[1]
theta = Vector(LinRange(10, 170, 20))
# Model
x = [A Z E]
X = combex(x, r)
m = build_model(4, 2, 4, 16)
params, re = Flux.destructure(m)
# Derivative of differential cross section wrt NN parameters
Enzyme.jacobian(set_runtime_activity(Reverse), p -> calculateDifferentialCrossSection(A, Z, E, eval_model(re(p), X)', r, dr, theta, L), params)
Error message:
julia> include("coredump.jl")
julia: /workspace/srcdir/Enzyme/build/Enzyme/CallDerivatives.inc:1785: bool AdjointGenerator::handleKnownCallDerivatives(llvm::CallInst&, llvm::Function*, llvm::StringRef, const std::vector<bool>&, llvm::CallInst*): Assertion `gutils->isConstantValue(call.getOperand(0))' failed.
[1955881] signal (6.-6): Aborted
in expression starting at /vast/home/daningburg/nuclear-diffprog/MWEs/coredump.jl:275
gsignal at /lib64/libc.so.6 (unknown line)
abort at /lib64/libc.so.6 (unknown line)
__assert_fail_base.cold.0 at /lib64/libc.so.6 (unknown line)
__assert_fail at /lib64/libc.so.6 (unknown line)
handleKnownCallDerivatives at /workspace/srcdir/Enzyme/build/Enzyme/CallDerivatives.inc:1785
visitCallInst at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:6278
visit at /opt/x86_64-linux-gnu/x86_64-linux-gnu/sys-root/usr/local/include/llvm/IR/InstVisitor.h:111 [inlined]
CreatePrimalAndGradient at /workspace/srcdir/Enzyme/enzyme/Enzyme/EnzymeLogic.cpp:4305
recursivelyHandleSubfunction at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:5742
visitCallInst at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:6479
visit at /opt/x86_64-linux-gnu/x86_64-linux-gnu/sys-root/usr/local/include/llvm/IR/InstVisitor.h:111 [inlined]
CreatePrimalAndGradient at /workspace/srcdir/Enzyme/enzyme/Enzyme/EnzymeLogic.cpp:4305
recursivelyHandleSubfunction at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:5742
visitCallInst at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:6479
visit at /opt/x86_64-linux-gnu/x86_64-linux-gnu/sys-root/usr/local/include/llvm/IR/InstVisitor.h:111 [inlined]
CreatePrimalAndGradient at /workspace/srcdir/Enzyme/enzyme/Enzyme/EnzymeLogic.cpp:4305
recursivelyHandleSubfunction at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:5742
visitCallInst at /workspace/srcdir/Enzyme/enzyme/Enzyme/AdjointGenerator.h:6479
visit at /opt/x86_64-linux-gnu/x86_64-linux-gnu/sys-root/usr/local/include/llvm/IR/InstVisitor.h:111 [inlined]
CreatePrimalAndGradient at /workspace/srcdir/Enzyme/enzyme/Enzyme/EnzymeLogic.cpp:4305
EnzymeCreatePrimalAndGradient at /workspace/srcdir/Enzyme/enzyme/Enzyme/CApi.cpp:633
EnzymeCreatePrimalAndGradient at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/api.jl:268
unknown function (ip: 0x1495b42d751e)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
enzyme! at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:1554
#codegen#18938 at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:4436
codegen at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:3239 [inlined]
_thunk at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5288
_thunk at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5288 [inlined]
cached_compilation at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5340 [inlined]
thunkbase at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5451
thunk_generator at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5636
jfptr_thunk_generator_32178 at /vast/home/daningburg/.julia/compiled/v1.10/Enzyme/G1p5n_WrRgF.so (unknown line)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jl_call_staged at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/method.c:540
ijl_code_for_staged at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/method.c:593
get_staged at ./compiler/utilities.jl:123
retrieve_code_info at ./compiler/utilities.jl:135 [inlined]
InferenceState at ./compiler/inferencestate.jl:430
typeinf_edge at ./compiler/typeinfer.jl:920
abstract_call_method at ./compiler/abstractinterpretation.jl:629
abstract_call_gf_by_type at ./compiler/abstractinterpretation.jl:95
abstract_call_known at ./compiler/abstractinterpretation.jl:2087
abstract_call at ./compiler/abstractinterpretation.jl:2169
abstract_call at ./compiler/abstractinterpretation.jl:2162
abstract_call at ./compiler/abstractinterpretation.jl:2354
abstract_eval_call at ./compiler/abstractinterpretation.jl:2370
abstract_eval_statement_expr at ./compiler/abstractinterpretation.jl:2380
abstract_eval_statement at ./compiler/abstractinterpretation.jl:2624
abstract_eval_basic_statement at ./compiler/abstractinterpretation.jl:2913
typeinf_local at ./compiler/abstractinterpretation.jl:3098
typeinf_nocycle at ./compiler/abstractinterpretation.jl:3186
_typeinf at ./compiler/typeinfer.jl:247
typeinf at ./compiler/typeinfer.jl:216
typeinf_ext at ./compiler/typeinfer.jl:1051
typeinf_ext_toplevel at ./compiler/typeinfer.jl:1082
typeinf_ext_toplevel at ./compiler/typeinfer.jl:1078
jfptr_typeinf_ext_toplevel_35741.1 at /vast/home/daningburg/.julia/julia-1.10.6/lib/julia/sys.so (unknown line)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jl_apply at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/julia.h:1982 [inlined]
jl_type_infer at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:394
jl_generate_fptr_impl at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/jitlayers.cpp:504
jl_compile_method_internal at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2481 [inlined]
jl_compile_method_internal at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2368
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2887 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
#17 at /vast/home/daningburg/nuclear-diffprog/MWEs/coredump.jl:275 [inlined]
augmented_julia__17_436wrap at /vast/home/daningburg/nuclear-diffprog/MWEs/coredump.jl:0
macro expansion at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5218 [inlined]
enzyme_call at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:4764 [inlined]
AugmentedForwardThunk at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/compiler.jl:4700
unknown function (ip: 0x1495b43543d9)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
#130 at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/sugar.jl:928 [inlined]
macro expansion at ./ntuple.jl:72 [inlined]
ntuple at ./ntuple.jl:69 [inlined]
#jacobian#129 at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/sugar.jl:924
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jacobian at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/sugar.jl:841 [inlined]
#jacobian#129 at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/sugar.jl:856 [inlined]
jacobian at /vast/home/daningburg/.julia/packages/Enzyme/ydGh2/src/sugar.jl:841
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jl_apply at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/julia.h:1982 [inlined]
do_call at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:126
eval_value at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:223
eval_stmt_value at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:174 [inlined]
eval_body at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:617
jl_interpret_toplevel_thunk at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:775
jl_toplevel_eval_flex at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/toplevel.c:934
jl_toplevel_eval_flex at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/toplevel.c:877
ijl_toplevel_eval_in at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/toplevel.c:985
eval at ./boot.jl:385 [inlined]
include_string at ./loading.jl:2076
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
_include at ./loading.jl:2136
include at ./client.jl:494
unknown function (ip: 0x1495b4284185)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jl_apply at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/julia.h:1982 [inlined]
do_call at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:126
eval_value at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:223
eval_stmt_value at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:174 [inlined]
eval_body at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:617
jl_interpret_toplevel_thunk at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/interpreter.c:775
jl_toplevel_eval_flex at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/toplevel.c:934
jl_toplevel_eval_flex at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/toplevel.c:877
ijl_toplevel_eval_in at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/toplevel.c:985
eval at ./boot.jl:385 [inlined]
eval_user_input at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/usr/share/julia/stdlib/v1.10/REPL/src/REPL.jl:150
repl_backend_loop at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/usr/share/julia/stdlib/v1.10/REPL/src/REPL.jl:246
#start_repl_backend#46 at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/usr/share/julia/stdlib/v1.10/REPL/src/REPL.jl:231
start_repl_backend at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/usr/share/julia/stdlib/v1.10/REPL/src/REPL.jl:228
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
#run_repl#59 at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/usr/share/julia/stdlib/v1.10/REPL/src/REPL.jl:389
run_repl at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/usr/share/julia/stdlib/v1.10/REPL/src/REPL.jl:375
jfptr_run_repl_91949.1 at /vast/home/daningburg/.julia/julia-1.10.6/lib/julia/sys.so (unknown line)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
#1013 at ./client.jl:437
jfptr_YY.1013_82918.1 at /vast/home/daningburg/.julia/julia-1.10.6/lib/julia/sys.so (unknown line)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jl_apply at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/julia.h:1982 [inlined]
jl_f__call_latest at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/builtins.c:812
#invokelatest#2 at ./essentials.jl:892 [inlined]
invokelatest at ./essentials.jl:889 [inlined]
run_main_repl at ./client.jl:421
exec_options at ./client.jl:338
_start at ./client.jl:557
jfptr__start_82944.1 at /vast/home/daningburg/.julia/julia-1.10.6/lib/julia/sys.so (unknown line)
_jl_invoke at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:2895 [inlined]
ijl_apply_generic at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/gf.c:3077
jl_apply at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/julia.h:1982 [inlined]
true_main at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/jlapi.c:582
jl_repl_entrypoint at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/src/jlapi.c:731
main at /cache/build/builder-amdci5-5/julialang/julia-release-1-dot-10/cli/loader_exe.c:58
__libc_start_main at /lib64/libc.so.6 (unknown line)
unknown function (ip: 0x4010b8)
Allocations: 111617459 (Pool: 111514608; Big: 102851); GC: 141
Aborted (core dumped)
The text was updated successfully, but these errors were encountered:
I’m differentiating a function
calculateDifferentialCrossSection()
with respect to the parameters of a neural network. I’m getting a “core dumped” error when passing a parameterLmax
to the function which is then passed toVector(LinRange(0, Lmax, Lmax+1))
inside that function. For some reason, bringingVector(LinRange(0, Lmax, Lmax+1))
outside the function and passing the full vector to it instead ofLmax
solved this problem.I’m running on Julia 1.10.6.
Error message:
The text was updated successfully, but these errors were encountered: