forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Partition.java
104 lines (93 loc) · 4.15 KB
/
Partition.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/**
* Copyright (c) 1999-2011, Ecole des Mines de Nantes All rights reserved. Redistribution and use in
* source and binary forms, with or without modification, are permitted provided that the following
* conditions are met:
*
* <p>* Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer. * Redistributions in binary form must reproduce the
* above copyright notice, this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution. * Neither the name of the Ecole des Mines
* de Nantes nor the names of its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* <p>THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.google.ortools.contrib;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.*;
/**
* Partition n numbers into two groups, so that - the sum of the first group equals the sum of the
* second, - and the sum of the squares of the first group equals the sum of the squares of the
* second <br>
*
* @author Charles Prud'homme
* @since 18/03/11
*/
public class Partition {
/** Partition Problem. */
private static void solve(int m) {
Solver solver = new Solver("Partition " + m);
IntVar[] x, y;
x = solver.makeIntVarArray(m, 1, 2 * m, "x");
y = solver.makeIntVarArray(m, 1, 2 * m, "y");
// break symmetries
for (int i = 0; i < m - 1; i++) {
solver.addConstraint(solver.makeLess(x[i], x[i + 1]));
solver.addConstraint(solver.makeLess(y[i], y[i + 1]));
}
solver.addConstraint(solver.makeLess(x[0], y[0]));
IntVar[] xy = new IntVar[2 * m];
for (int i = m - 1; i >= 0; i--) {
xy[i] = x[i];
xy[m + i] = y[i];
}
solver.addConstraint(solver.makeAllDifferent(xy));
int[] coeffs = new int[2 * m];
for (int i = m - 1; i >= 0; i--) {
coeffs[i] = 1;
coeffs[m + i] = -1;
}
solver.addConstraint(solver.makeScalProdEquality(xy, coeffs, 0));
IntVar[] sxy, sx, sy;
sxy = new IntVar[2 * m];
sx = new IntVar[m];
sy = new IntVar[m];
for (int i = m - 1; i >= 0; i--) {
sx[i] = solver.makeSquare(x[i]).var();
sxy[i] = sx[i];
sy[i] = solver.makeSquare(y[i]).var();
sxy[m + i] = sy[i];
}
solver.addConstraint(solver.makeScalProdEquality(sxy, coeffs, 0));
solver.addConstraint(solver.makeSumEquality(x, 2 * m * (2 * m + 1) / 4));
solver.addConstraint(solver.makeSumEquality(y, 2 * m * (2 * m + 1) / 4));
solver.addConstraint(solver.makeSumEquality(sx, 2 * m * (2 * m + 1) * (4 * m + 1) / 12));
solver.addConstraint(solver.makeSumEquality(sy, 2 * m * (2 * m + 1) * (4 * m + 1) / 12));
DecisionBuilder db = solver.makeDefaultPhase(xy);
SolutionCollector collector = solver.makeFirstSolutionCollector();
collector.add(xy);
SearchMonitor log = solver.makeSearchLog(10000);
solver.newSearch(db, log, collector);
solver.nextSolution();
System.out.println("Solution solution");
for (int i = 0; i < m; ++i) {
System.out.print("[" + collector.value(0, xy[i]) + "] ");
}
System.out.printf("\n");
for (int i = 0; i < m; ++i) {
System.out.print("[" + collector.value(0, xy[m + i]) + "] ");
}
System.out.println();
}
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
Partition.solve(32);
}
}