forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
car.py
139 lines (112 loc) · 3.62 KB
/
car.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright 2010 Hakan Kjellerstrand [email protected]
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Car sequencing in Google CP Solver.
This model is based on the car sequencing model in
Pascal Van Hentenryck
'The OPL Optimization Programming Language', page 184ff.
Compare with the following models:
* MiniZinc: http://hakank.org/minizinc/car.mzn
* Comet: http://hakank.org/comet/car.co
This model was created by Hakan Kjellerstrand ([email protected])
Also see my other Google CP Solver models:
http://www.hakank.org/google_or_tools/
"""
import sys
from ortools.constraint_solver import pywrapcp
def main(num_sol=3):
# Create the solver.
solver = pywrapcp.Solver("Car sequence")
#
# data
#
nbCars = 6
nbOptions = 5
nbSlots = 10
Cars = list(range(nbCars))
Options = list(range(nbOptions))
Slots = list(range(nbSlots))
# car 0 1 2 3 4 5
demand = [1, 1, 2, 2, 2, 2]
option = [
# car 0 1 2 3 4 5
[1, 0, 0, 0, 1, 1], # option 1
[0, 0, 1, 1, 0, 1], # option 2
[1, 0, 0, 0, 1, 0], # option 3
[1, 1, 0, 1, 0, 0], # option 4
[0, 0, 1, 0, 0, 0] # option 5
]
capacity = [(1, 2), (2, 3), (1, 3), (2, 5), (1, 5)]
optionDemand = [
sum([demand[j] * option[i][j] for j in Cars]) for i in Options
]
#
# declare variables
#
slot = [solver.IntVar(0, nbCars - 1, "slot[%i]" % i) for i in Slots]
setup = {}
for i in Options:
for j in Slots:
setup[(i, j)] = solver.IntVar(0, 1, "setup[%i,%i]" % (i, j))
setup_flat = [setup[i, j] for i in Options for j in Slots]
#
# constraints
#
for c in Cars:
b = [solver.IsEqualCstVar(slot[s], c) for s in Slots]
solver.Add(solver.Sum(b) == demand[c])
for o in Options:
for s in range(0, nbSlots - capacity[o][1] + 1):
b = [setup[o, j] for j in range(s, s + capacity[o][1] - 1)]
solver.Add(solver.Sum(b) <= capacity[o][0])
for o in Options:
for s in Slots:
solver.Add(setup[(o, s)] == solver.Element(option[o], slot[s]))
for o in Options:
for i in range(optionDemand[o]):
s_range = list(range(0, nbSlots - (i + 1) * capacity[o][1]))
ss = [setup[o, s] for s in s_range]
cc = optionDemand[o] - (i + 1) * capacity[o][0]
if len(ss) > 0 and cc >= 0:
solver.Add(solver.Sum(ss) >= cc)
#
# search and result
#
db = solver.Phase(slot + setup_flat, solver.CHOOSE_FIRST_UNBOUND,
solver.ASSIGN_MIN_VALUE)
solver.NewSearch(db)
num_solutions = 0
while solver.NextSolution():
print("slot:%s" % ",".join([str(slot[i].Value()) for i in Slots]))
print("setup:")
for o in Options:
print("%i/%i:" % (capacity[o][0], capacity[o][1]), end=" ")
for s in Slots:
print(setup[o, s].Value(), end=" ")
print()
print()
num_solutions += 1
if num_solutions >= num_sol:
break
solver.EndSearch()
print()
print("num_solutions:", num_solutions)
print("failures:", solver.Failures())
print("branches:", solver.Branches())
print("WallTime:", solver.WallTime())
num_sol = 3
if __name__ == "__main__":
if len(sys.argv) > 1:
num_sol = int(sys.argv[1])
main(num_sol)