forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
contiguity_regular.cs
191 lines (169 loc) · 5.99 KB
/
contiguity_regular.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using System.Collections;
using System.Linq;
using System.Diagnostics;
using Google.OrTools.ConstraintSolver;
public class ContiguityRegular
{
/*
* Global constraint regular
*
* This is a translation of MiniZinc's regular constraint (defined in
* lib/zinc/globals.mzn), via the Comet code refered above.
* All comments are from the MiniZinc code.
* """
* The sequence of values in array 'x' (which must all be in the range 1..S)
* is accepted by the DFA of 'Q' states with input 1..S and transition
* function 'd' (which maps (1..Q, 1..S) -> 0..Q)) and initial state 'q0'
* (which must be in 1..Q) and accepting states 'F' (which all must be in
* 1..Q). We reserve state 0 to be an always failing state.
* """
*
* x : IntVar array
* Q : number of states
* S : input_max
* d : transition matrix
* q0: initial state
* F : accepting states
*
*/
static void MyRegular(Solver solver, IntVar[] x, int Q, int S, int[,] d, int q0, int[] F)
{
Debug.Assert(Q > 0, "regular: 'Q' must be greater than zero");
Debug.Assert(S > 0, "regular: 'S' must be greater than zero");
// d2 is the same as d, except we add one extra transition for
// each possible input; each extra transition is from state zero
// to state zero. This allows us to continue even if we hit a
// non-accepted input.
int[][] d2 = new int [Q + 1][];
for (int i = 0; i <= Q; i++)
{
int[] row = new int[S];
for (int j = 0; j < S; j++)
{
if (i == 0)
{
row[j] = 0;
}
else
{
row[j] = d[i - 1, j];
}
}
d2[i] = row;
}
int[] d2_flatten =
(from i in Enumerable.Range(0, Q + 1) from j in Enumerable.Range(0, S) select d2[i][j]).ToArray();
// If x has index set m..n, then a[m-1] holds the initial state
// (q0), and a[i+1] holds the state we're in after processing
// x[i]. If a[n] is in F, then we succeed (ie. accept the
// string).
int m = 0;
int n = x.Length;
IntVar[] a = solver.MakeIntVarArray(n + 1 - m, 0, Q + 1, "a");
// Check that the final state is in F
solver.Add(a[a.Length - 1].Member(F));
// First state is q0
solver.Add(a[m] == q0);
for (int i = 0; i < n; i++)
{
solver.Add(x[i] >= 1);
solver.Add(x[i] <= S);
// Determine a[i+1]: a[i+1] == d2[a[i], x[i]]
solver.Add(a[i + 1] == d2_flatten.Element(((a[i] * S) + (x[i] - 1))));
}
}
static void MyContiguity(Solver solver, IntVar[] x)
{
// the DFA (for regular)
int n_states = 3;
int input_max = 2;
int initial_state = 1; // note: state 0 is used for the failing state
// in MyRegular
// all states are accepting states
int[] accepting_states = { 1, 2, 3 };
// The regular expression 0*1*0*
int[,] transition_fn = {
{ 1, 2 }, // state 1 (start): input 0 -> state 1, input 1 -> state 2 i.e. 0*
{ 3, 2 }, // state 2: 1*
{ 3, 0 }, // state 3: 0*
};
MyRegular(solver, x, n_states, input_max, transition_fn, initial_state, accepting_states);
}
/**
*
* Global constraint contiguity using regular
*
* This is a decomposition of the global constraint global contiguity.
*
* From Global Constraint Catalogue
* http://www.emn.fr/x-info/sdemasse/gccat/Cglobal_contiguity.html
* """
* Enforce all variables of the VARIABLES collection to be assigned to 0 or 1.
* In addition, all variables assigned to value 1 appear contiguously.
*
* Example:
* (<0, 1, 1, 0>)
*
* The global_contiguity constraint holds since the sequence 0 1 1 0 contains
* no more than one group of contiguous 1.
* """
*
* Also see http://www.hakank.org/or-tools/contiguity_regular.py
*
*/
private static void Solve()
{
Solver solver = new Solver("ContiguityRegular");
//
// Data
//
int n = 7; // length of the array
//
// Decision variables
//
// Note: We use 1..2 (instead of 0..1) and subtract 1 in the solution
IntVar[] reg_input = solver.MakeIntVarArray(n, 1, 2, "reg_input");
//
// Constraints
//
MyContiguity(solver, reg_input);
//
// Search
//
DecisionBuilder db = solver.MakePhase(reg_input, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
solver.NewSearch(db);
while (solver.NextSolution())
{
for (int i = 0; i < n; i++)
{
// Note: here we subtract 1 to get 0..1
Console.Write((reg_input[i].Value() - 1) + " ");
}
Console.WriteLine();
}
Console.WriteLine("\nSolutions: {0}", solver.Solutions());
Console.WriteLine("WallTime: {0}ms", solver.WallTime());
Console.WriteLine("Failures: {0}", solver.Failures());
Console.WriteLine("Branches: {0} ", solver.Branches());
solver.EndSearch();
}
public static void Main(String[] args)
{
Solve();
}
}