forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crypta.py
114 lines (90 loc) · 3.32 KB
/
crypta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright 2010 Hakan Kjellerstrand [email protected]
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Cryptarithmetic puzzle in Google CP Solver.
Prolog benchmark problem GNU Prolog (crypta.pl)
'''
Name : crypta.pl
Title : crypt-arithmetic
Original Source: P. Van Hentenryck's book
Adapted by : Daniel Diaz - INRIA France
Date : September 1992
Solve the operation:
B A I J J A J I I A H F C F E B B J E A
+ D H F G A B C D I D B I F F A G F E J E
-----------------------------------------
= G J E G A C D D H F A F J B F I H E E F
'''
Compare with the following models:
* Comet: http://hakank.org/comet/crypta.co
* MiniZinc: http://hakank.org/minizinc/crypta.mzn
* ECLiPSe: http://hakank.org/eclipse/crypta.ecl
* Gecode: http://hakank.org/gecode/crypta.cpp
* SICStus: http://hakank.org/sicstus/crypta.pl
This model was created by Hakan Kjellerstrand ([email protected])
Also see my other Google CP Solver models:
http://www.hakank.org/google_or_tools/
"""
from ortools.constraint_solver import pywrapcp
def main():
# Create the solver.
solver = pywrapcp.Solver("Crypta")
#
# data
#
#
# variables
#
LD = [solver.IntVar(0, 9, "LD[%i]" % i) for i in range(0, 10)]
A, B, C, D, E, F, G, H, I, J = LD
Sr1 = solver.IntVar(0, 1, "Sr1")
Sr2 = solver.IntVar(0, 1, "Sr2")
#
# constraints
#
solver.Add(solver.AllDifferent(LD))
solver.Add(B >= 1)
solver.Add(D >= 1)
solver.Add(G >= 1)
solver.Add(A + 10 * E + 100 * J + 1000 * B + 10000 * B + 100000 * E +
1000000 * F + E + 10 * J + 100 * E + 1000 * F + 10000 * G +
100000 * A + 1000000 * F == F + 10 * E + 100 * E + 1000 * H +
10000 * I + 100000 * F + 1000000 * B + 10000000 * Sr1)
solver.Add(C + 10 * F + 100 * H + 1000 * A + 10000 * I + 100000 * I +
1000000 * J + F + 10 * I + 100 * B + 1000 * D + 10000 * I +
100000 * D + 1000000 * C + Sr1 == J + 10 * F + 100 * A + 1000 * F +
10000 * H + 100000 * D + 1000000 * D + 10000000 * Sr2)
solver.Add(A + 10 * J + 100 * J + 1000 * I + 10000 * A + 100000 * B + B +
10 * A + 100 * G + 1000 * F + 10000 * H + 100000 * D + Sr2 == C +
10 * A + 100 * G + 1000 * E + 10000 * J + 100000 * G)
#
# search and result
#
db = solver.Phase(LD, solver.INT_VAR_SIMPLE, solver.INT_VALUE_SIMPLE)
solver.NewSearch(db)
num_solutions = 0
str = "ABCDEFGHIJ"
while solver.NextSolution():
num_solutions += 1
for (letter, val) in [(str[i], LD[i].Value()) for i in range(len(LD))]:
print("%s: %i" % (letter, val))
print()
solver.EndSearch()
print()
print("num_solutions:", num_solutions)
print("failures:", solver.Failures())
print("branches:", solver.Branches())
print("WallTime:", solver.WallTime())
if __name__ == "__main__":
main()