forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
curious_set_of_integers.cs
114 lines (99 loc) · 3.08 KB
/
curious_set_of_integers.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using System.Collections;
using System.IO;
using System.Linq;
using System.Text.RegularExpressions;
using Google.OrTools.ConstraintSolver;
public class CuriousSetOfIntegers
{
public static void Decreasing(Solver solver, IntVar[] x)
{
for (int i = 0; i < x.Length - 1; i++)
{
solver.Add(x[i] <= x[i + 1]);
}
}
/**
*
* Crypto problem in Google CP Solver.
*
* Martin Gardner (February 1967):
* """
* The integers 1,3,8, and 120 form a set with a remarkable property: the
* product of any two integers is one less than a perfect square. Find
* a fifth number that can be added to the set without destroying
* this property.
* """
*
* Also see, http://www.hakank.org/or-tools/curious_set_of_integers.py
*
*/
private static void Solve()
{
Solver solver = new Solver("CuriousSetOfIntegers");
//
// data
//
int n = 5;
int max_val = 10000;
//
// Decision variables
//
IntVar[] x = solver.MakeIntVarArray(n, 0, max_val, "x");
//
// Constraints
//
solver.Add(x.AllDifferent());
for (int i = 0; i < n - 1; i++)
{
for (int j = i + 1; j < n; j++)
{
IntVar p = solver.MakeIntVar(0, max_val);
solver.Add((p.Square() - 1) - (x[i] * x[j]) == 0);
}
}
// Symmetry breaking
Decreasing(solver, x);
// This is the original problem
// Which is the fifth number?
int[] v = { 1, 3, 8, 120 };
IntVar[] b = (from i in Enumerable.Range(0, n) select x[i].IsMember(v)).ToArray();
solver.Add(b.Sum() == 4);
//
// Search
//
DecisionBuilder db = solver.MakePhase(x, Solver.CHOOSE_MIN_SIZE_LOWEST_MIN, Solver.ASSIGN_MIN_VALUE);
solver.NewSearch(db);
while (solver.NextSolution())
{
for (int i = 0; i < n; i++)
{
Console.Write(x[i].Value() + " ");
}
Console.WriteLine();
}
Console.WriteLine("\nSolutions: {0}", solver.Solutions());
Console.WriteLine("WallTime: {0}ms", solver.WallTime());
Console.WriteLine("Failures: {0}", solver.Failures());
Console.WriteLine("Branches: {0} ", solver.Branches());
solver.EndSearch();
}
public static void Main(String[] args)
{
Solve();
}
}