forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
debruijn.cs
206 lines (176 loc) · 5.61 KB
/
debruijn.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//
// Copyright 2012 Hakan Kjellerstrand
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using Google.OrTools.ConstraintSolver;
public class DeBruijn
{
/**
*
* ToNum(solver, a, num, base)
*
* channelling between the array a and the number num.
*
*/
private static Constraint ToNum(IntVar[] a, IntVar num, int bbase)
{
int len = a.Length;
IntVar[] tmp = new IntVar[len];
for (int i = 0; i < len; i++)
{
tmp[i] = (a[i] * (int)Math.Pow(bbase, (len - i - 1))).Var();
}
return tmp.Sum() == num;
}
/**
*
* Implements "arbitrary" de Bruijn sequences.
* See http://www.hakank.org/or-tools/debruijn_binary.py
*
*/
private static void Solve(int bbase, int n, int m)
{
Solver solver = new Solver("DeBruijn");
// Ensure that the number of each digit in bin_code is
// the same. Nice feature, but it can slow things down...
bool check_same_gcc = false; // true;
//
// Decision variables
//
IntVar[] x = solver.MakeIntVarArray(m, 0, (int)Math.Pow(bbase, n) - 1, "x");
IntVar[,] binary = solver.MakeIntVarMatrix(m, n, 0, bbase - 1, "binary");
// this is the de Bruijn sequence
IntVar[] bin_code = solver.MakeIntVarArray(m, 0, bbase - 1, "bin_code");
// occurences of each number in bin_code
IntVar[] gcc = solver.MakeIntVarArray(bbase, 0, m, "gcc");
// for the branching
IntVar[] all = new IntVar[2 * m + bbase];
for (int i = 0; i < m; i++)
{
all[i] = x[i];
all[m + i] = bin_code[i];
}
for (int i = 0; i < bbase; i++)
{
all[2 * m + i] = gcc[i];
}
//
// Constraints
//
solver.Add(x.AllDifferent());
// converts x <-> binary
for (int i = 0; i < m; i++)
{
IntVar[] t = new IntVar[n];
for (int j = 0; j < n; j++)
{
t[j] = binary[i, j];
}
solver.Add(ToNum(t, x[i], bbase));
}
// the de Bruijn condition:
// the first elements in binary[i] is the same as the last
// elements in binary[i-1]
for (int i = 1; i < m; i++)
{
for (int j = 1; j < n; j++)
{
solver.Add(binary[i - 1, j] == binary[i, j - 1]);
}
}
// ... and around the corner
for (int j = 1; j < n; j++)
{
solver.Add(binary[m - 1, j] == binary[0, j - 1]);
}
// converts binary -> bin_code (de Bruijn sequence)
for (int i = 0; i < m; i++)
{
solver.Add(bin_code[i] == binary[i, 0]);
}
// extra: ensure that all the numbers in the de Bruijn sequence
// (bin_code) has the same occurrences (if check_same_gcc is True
// and mathematically possible)
solver.Add(bin_code.Distribute(gcc));
if (check_same_gcc && m % bbase == 0)
{
for (int i = 1; i < bbase; i++)
{
solver.Add(gcc[i] == gcc[i - 1]);
}
}
// symmetry breaking:
// the minimum value of x should be first
// solver.Add(x[0] == x.Min());
//
// Search
//
DecisionBuilder db = solver.MakePhase(all, Solver.CHOOSE_MIN_SIZE_LOWEST_MAX, Solver.ASSIGN_MIN_VALUE);
solver.NewSearch(db);
while (solver.NextSolution())
{
Console.Write("x: ");
for (int i = 0; i < m; i++)
{
Console.Write(x[i].Value() + " ");
}
Console.Write("\nde Bruijn sequence:");
for (int i = 0; i < m; i++)
{
Console.Write(bin_code[i].Value() + " ");
}
Console.Write("\ngcc: ");
for (int i = 0; i < bbase; i++)
{
Console.Write(gcc[i].Value() + " ");
}
Console.WriteLine("\n");
// for debugging etc: show the full binary table
/*
Console.Write("binary:");
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
Console.Write(binary[i][j].Value() + " ");
}
Console.WriteLine();
}
Console.WriteLine();
*/
}
Console.WriteLine("\nSolutions: {0}", solver.Solutions());
Console.WriteLine("WallTime: {0}ms", solver.WallTime());
Console.WriteLine("Failures: {0}", solver.Failures());
Console.WriteLine("Branches: {0} ", solver.Branches());
solver.EndSearch();
}
public static void Main(String[] args)
{
int bbase = 2;
int n = 3;
int m = 8;
if (args.Length > 1)
{
bbase = Convert.ToInt32(args[1]);
}
if (args.Length > 2)
{
n = Convert.ToInt32(args[2]);
}
if (args.Length > 3)
{
m = Convert.ToInt32(args[3]);
}
Solve(bbase, n, m);
}
}