forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
binpacking_2d_sat.cc
236 lines (211 loc) · 9 KB
/
binpacking_2d_sat.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file solves a 2D Bin Packing problem.
// It loads the size of the main rectangle, all available items (rectangles
// too), and tries to fit all rectangles in the minimum numbers of bins (they
// have the size of the main rectangle.)
#include <algorithm>
#include <cstdint>
#include <limits>
#include <string>
#include <vector>
#include "absl/flags/flag.h"
#include "google/protobuf/text_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/packing/binpacking_2d_parser.h"
#include "ortools/packing/multiple_dimensions_bin_packing.pb.h"
#include "ortools/sat/cp_model.h"
ABSL_FLAG(std::string, input, "", "Input file.");
ABSL_FLAG(int, instance, -1, "Instance number if the file.");
ABSL_FLAG(std::string, params, "", "Sat parameters in text proto format.");
ABSL_FLAG(int, max_bins, 0,
"Maximum number of bins. The 0 default value implies the code will "
"use some heuristics to compute this number.");
ABSL_FLAG(bool, symmetry_breaking, true, "Use symmetry breaking constraints");
ABSL_FLAG(bool, global_area_constraint, false,
"Redundant constraint to link the global area covered");
ABSL_FLAG(bool, alternate_model, true,
"A different way to express the objective");
namespace operations_research {
namespace sat {
// Load a 2D binpacking problem and solve it.
void LoadAndSolve(const std::string& file_name, int instance) {
packing::BinPacking2dParser parser;
if (!parser.Load2BPFile(file_name, instance)) {
LOG(FATAL) << "Cannot read instance " << instance << " from file '"
<< file_name << "'";
}
packing::MultipleDimensionsBinPackingProblem problem = parser.problem();
LOG(INFO) << "Successfully loaded instance " << instance << " from file '"
<< file_name << "'";
LOG(INFO) << "Instance has " << problem.items_size() << " items";
const auto box_dimensions = problem.box_shape().dimensions();
const int num_dimensions = box_dimensions.size();
const int num_items = problem.items_size();
const int64_t area_of_one_bin = box_dimensions[0] * box_dimensions[1];
int64_t sum_of_items_area = 0;
for (const auto& item : problem.items()) {
CHECK_EQ(1, item.shapes_size());
const auto& shape = item.shapes(0);
CHECK_EQ(2, shape.dimensions_size());
sum_of_items_area += shape.dimensions(0) * shape.dimensions(1);
}
// Take the ceil of the ratio.
const int64_t trivial_lb =
(sum_of_items_area + area_of_one_bin - 1) / area_of_one_bin;
LOG(INFO) << "Trivial lower bound of the number of bins = " << trivial_lb;
const int max_bins = absl::GetFlag(FLAGS_max_bins) == 0
? trivial_lb * 2
: absl::GetFlag(FLAGS_max_bins);
if (absl::GetFlag(FLAGS_max_bins) == 0) {
LOG(INFO) << "Setting max_bins to " << max_bins;
}
CpModelBuilder cp_model;
// We do not support multiple shapes per item.
for (int item = 0; item < num_items; ++item) {
const int num_shapes = problem.items(item).shapes_size();
CHECK_EQ(1, num_shapes);
}
// Create one Boolean variable per item and per bin.
std::vector<std::vector<BoolVar>> item_to_bin(num_items);
for (int item = 0; item < num_items; ++item) {
item_to_bin[item].resize(max_bins);
for (int b = 0; b < max_bins; ++b) {
item_to_bin[item][b] = cp_model.NewBoolVar();
}
}
// Exactly one bin is selected for each item.
for (int item = 0; item < num_items; ++item) {
cp_model.AddEquality(LinearExpr::Sum(item_to_bin[item]), 1);
}
// Manages positions and sizes for each item.
std::vector<std::vector<std::vector<IntervalVar>>>
interval_by_item_bin_dimension(num_items);
for (int item = 0; item < num_items; ++item) {
interval_by_item_bin_dimension[item].resize(max_bins);
for (int b = 0; b < max_bins; ++b) {
interval_by_item_bin_dimension[item][b].resize(2);
for (int dim = 0; dim < num_dimensions; ++dim) {
const int64_t dimension = box_dimensions[dim];
const int64_t size = problem.items(item).shapes(0).dimensions(dim);
const IntVar start = cp_model.NewIntVar({0, dimension - size});
interval_by_item_bin_dimension[item][b][dim] =
cp_model.NewOptionalFixedSizeIntervalVar(start, size,
item_to_bin[item][b]);
}
}
}
// Non overlapping.
if (num_dimensions == 1) {
LOG(FATAL) << "One dimension is not supported.";
} else if (num_dimensions == 2) {
LOG(INFO) << "Box size: " << box_dimensions[0] << "*" << box_dimensions[1];
for (int b = 0; b < max_bins; ++b) {
NoOverlap2DConstraint no_overlap_2d = cp_model.AddNoOverlap2D();
for (int item = 0; item < num_items; ++item) {
no_overlap_2d.AddRectangle(interval_by_item_bin_dimension[item][b][0],
interval_by_item_bin_dimension[item][b][1]);
}
}
} else {
LOG(FATAL) << num_dimensions << " dimensions not supported.";
}
// Redundant constraint.
// The sum of areas in each bin is the sum of all items area.
if (absl::GetFlag(FLAGS_global_area_constraint)) {
LinearExpr sum_of_areas;
for (int item = 0; item < num_items; ++item) {
const int64_t item_area = problem.items(item).shapes(0).dimensions(0) *
problem.items(item).shapes(0).dimensions(1);
for (int b = 0; b < max_bins; ++b) {
sum_of_areas += item_to_bin[item][b] * item_area;
}
}
cp_model.AddEquality(sum_of_areas, sum_of_items_area);
}
if (absl::GetFlag(FLAGS_alternate_model)) {
const IntVar obj = cp_model.NewIntVar(Domain(trivial_lb, max_bins));
cp_model.Minimize(obj);
for (int b = trivial_lb; b < max_bins; ++b) {
for (int item = 0; item < num_items; ++item) {
cp_model.AddGreaterOrEqual(obj, b + 1)
.OnlyEnforceIf(item_to_bin[item][b]);
}
}
} else {
// Maintain one Boolean variable per bin that indicates if the bin is used
// or not.
std::vector<BoolVar> bin_is_used(max_bins);
for (int b = 0; b < max_bins; ++b) {
bin_is_used[b] = cp_model.NewBoolVar();
// Link bin_is_used[i] with the items in bin i.
std::vector<BoolVar> all_items_in_bin;
for (int item = 0; item < num_items; ++item) {
cp_model.AddImplication(item_to_bin[item][b], bin_is_used[b]);
all_items_in_bin.push_back(item_to_bin[item][b]);
}
cp_model.AddBoolOr(all_items_in_bin).OnlyEnforceIf(bin_is_used[b]);
}
// Symmetry breaking.
if (absl::GetFlag(FLAGS_symmetry_breaking)) {
// Forces the number of items per bin to decrease.
std::vector<IntVar> num_items_in_bin(max_bins);
for (int b = 0; b < max_bins; ++b) {
num_items_in_bin[b] = cp_model.NewIntVar({0, num_items});
std::vector<BoolVar> items_in_bins;
for (int item = 0; item < num_items; ++item) {
items_in_bins.push_back(item_to_bin[item][b]);
}
cp_model.AddEquality(num_items_in_bin[b],
LinearExpr::Sum(items_in_bins));
}
for (int b = 1; b < max_bins; ++b) {
cp_model.AddGreaterOrEqual(num_items_in_bin[b - 1],
num_items_in_bin[b]);
}
}
// Objective.
cp_model.Minimize(LinearExpr::Sum(bin_is_used));
}
// Setup parameters.
SatParameters parameters;
parameters.set_log_search_progress(true);
parameters.set_use_timetabling_in_no_overlap_2d(true);
parameters.set_use_energetic_reasoning_in_no_overlap_2d(true);
// Parse the --params flag.
if (!absl::GetFlag(FLAGS_params).empty()) {
CHECK(google::protobuf::TextFormat::MergeFromString(
absl::GetFlag(FLAGS_params), ¶meters))
<< absl::GetFlag(FLAGS_params);
}
// We rely on the solver default logging to log the number of bins.
const CpSolverResponse response =
SolveWithParameters(cp_model.Build(), parameters);
}
} // namespace sat
} // namespace operations_research
int main(int argc, char** argv) {
absl::SetFlag(&FLAGS_logtostderr, true);
InitGoogle(argv[0], &argc, &argv, true);
if (absl::GetFlag(FLAGS_input).empty()) {
LOG(FATAL) << "Please supply a data file with --input=";
}
if (absl::GetFlag(FLAGS_instance) == -1) {
LOG(FATAL) << "Please supply a valid instance number with --instance=";
}
operations_research::sat::LoadAndSolve(absl::GetFlag(FLAGS_input),
absl::GetFlag(FLAGS_instance));
return EXIT_SUCCESS;
}