forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cvrptw_with_stop_times_and_resources.cc
223 lines (208 loc) · 9.73 KB
/
cvrptw_with_stop_times_and_resources.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Capacitated Vehicle Routing Problem with Time Windows, fixed stop times and
// capacitated resources. A stop is defined as consecutive nodes at the same
// location.
// This is an extension to the model in cvrptw.cc so refer to that file for
// more information on the common part of the model. The model implemented here
// limits the number of vehicles which can simultaneously leave or enter a node
// to one.
#include <cstdint>
#include <vector>
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "examples/cpp/cvrptw_lib.h"
#include "google/protobuf/text_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
#include "ortools/constraint_solver/routing_parameters.pb.h"
using operations_research::Assignment;
using operations_research::DefaultRoutingSearchParameters;
using operations_research::GetSeed;
using operations_research::IntervalVar;
using operations_research::IntVar;
using operations_research::LocationContainer;
using operations_research::RandomDemand;
using operations_research::RoutingDimension;
using operations_research::RoutingIndexManager;
using operations_research::RoutingModel;
using operations_research::RoutingNodeIndex;
using operations_research::RoutingSearchParameters;
using operations_research::Solver;
using operations_research::StopServiceTimePlusTransition;
ABSL_FLAG(int, vrp_stops, 25, "Stop locations in the problem.");
ABSL_FLAG(int, vrp_orders_per_stop, 5, "Nodes for each stop.");
ABSL_FLAG(int, vrp_vehicles, 20,
"Size of Traveling Salesman Problem instance.");
ABSL_FLAG(bool, vrp_use_deterministic_random_seed, false,
"Use deterministic random seeds.");
ABSL_FLAG(std::string, routing_search_parameters, "",
"Text proto RoutingSearchParameters (possibly partial) that will "
"override the DefaultRoutingSearchParameters()");
const char* kTime = "Time";
const char* kCapacity = "Capacity";
int main(int argc, char** argv) {
InitGoogle(argv[0], &argc, &argv, true);
CHECK_LT(0, absl::GetFlag(FLAGS_vrp_stops))
<< "Specify an instance size greater than 0.";
CHECK_LT(0, absl::GetFlag(FLAGS_vrp_orders_per_stop))
<< "Specify an instance size greater than 0.";
CHECK_LT(0, absl::GetFlag(FLAGS_vrp_vehicles))
<< "Specify a non-null vehicle fleet size.";
const int vrp_orders =
absl::GetFlag(FLAGS_vrp_stops) * absl::GetFlag(FLAGS_vrp_orders_per_stop);
// Nodes are indexed from 0 to vrp_orders, the starts and ends of the routes
// are at node 0.
const RoutingIndexManager::NodeIndex kDepot(0);
RoutingIndexManager manager(vrp_orders + 1, absl::GetFlag(FLAGS_vrp_vehicles),
kDepot);
RoutingModel routing(manager);
// Setting up locations.
const int64_t kXMax = 100000;
const int64_t kYMax = 100000;
const int64_t kSpeed = 10;
LocationContainer locations(
kSpeed, absl::GetFlag(FLAGS_vrp_use_deterministic_random_seed));
for (int stop = 0; stop <= absl::GetFlag(FLAGS_vrp_stops); ++stop) {
const int num_orders =
stop == 0 ? 1 : absl::GetFlag(FLAGS_vrp_orders_per_stop);
locations.AddRandomLocation(kXMax, kYMax, num_orders);
}
// Setting the cost function.
const int vehicle_cost = routing.RegisterTransitCallback(
[&locations, &manager](int64_t i, int64_t j) {
return locations.ManhattanDistance(manager.IndexToNode(i),
manager.IndexToNode(j));
});
routing.SetArcCostEvaluatorOfAllVehicles(vehicle_cost);
// Adding capacity dimension constraints.
const int64_t kVehicleCapacity = 40;
const int64_t kNullCapacitySlack = 0;
RandomDemand demand(manager.num_nodes(), kDepot,
absl::GetFlag(FLAGS_vrp_use_deterministic_random_seed));
demand.Initialize();
routing.AddDimension(routing.RegisterTransitCallback(
[&demand, &manager](int64_t i, int64_t j) {
return demand.Demand(manager.IndexToNode(i),
manager.IndexToNode(j));
}),
kNullCapacitySlack, kVehicleCapacity,
/*fix_start_cumul_to_zero=*/true, kCapacity);
// Adding time dimension constraints.
const int64_t kStopTime = 300;
const int64_t kHorizon = 24 * 3600;
StopServiceTimePlusTransition time(
kStopTime, locations,
[&locations](RoutingNodeIndex i, RoutingNodeIndex j) {
return locations.ManhattanTime(i, j);
});
routing.AddDimension(
routing.RegisterTransitCallback([&time, &manager](int64_t i, int64_t j) {
return time.Compute(manager.IndexToNode(i), manager.IndexToNode(j));
}),
kHorizon, kHorizon, /*fix_start_cumul_to_zero=*/false, kTime);
const RoutingDimension& time_dimension = routing.GetDimensionOrDie(kTime);
// Adding time windows, for the sake of simplicty same for each stop.
std::mt19937 randomizer(
GetSeed(absl::GetFlag(FLAGS_vrp_use_deterministic_random_seed)));
const int64_t kTWDuration = 5 * 3600;
for (int stop = 0; stop < absl::GetFlag(FLAGS_vrp_stops); ++stop) {
const int64_t start =
absl::Uniform<int32_t>(randomizer, 0, kHorizon - kTWDuration);
for (int stop_order = 0;
stop_order < absl::GetFlag(FLAGS_vrp_orders_per_stop); ++stop_order) {
const int order =
stop * absl::GetFlag(FLAGS_vrp_orders_per_stop) + stop_order + 1;
time_dimension.CumulVar(order)->SetRange(start, start + kTWDuration);
}
}
// Adding resource constraints at order locations.
Solver* const solver = routing.solver();
std::vector<IntervalVar*> intervals;
for (int stop = 0; stop < absl::GetFlag(FLAGS_vrp_stops); ++stop) {
std::vector<IntervalVar*> stop_intervals;
for (int stop_order = 0;
stop_order < absl::GetFlag(FLAGS_vrp_orders_per_stop); ++stop_order) {
const int order =
stop * absl::GetFlag(FLAGS_vrp_orders_per_stop) + stop_order + 1;
IntervalVar* const interval = solver->MakeFixedDurationIntervalVar(
0, kHorizon, kStopTime, true, absl::StrCat("Order", order));
intervals.push_back(interval);
stop_intervals.push_back(interval);
// Link order and interval.
IntVar* const order_start = time_dimension.CumulVar(order);
solver->AddConstraint(
solver->MakeIsEqualCt(interval->SafeStartExpr(0), order_start,
interval->PerformedExpr()->Var()));
// Make interval performed iff corresponding order has service time.
// An order has no service time iff it is at the same location as the
// next order on the route.
IntVar* const is_null_duration =
solver
->MakeElement(
[&locations, order](int64_t index) {
return locations.SameLocationFromIndex(order, index);
},
routing.NextVar(order))
->Var();
solver->AddConstraint(
solver->MakeNonEquality(interval->PerformedExpr(), is_null_duration));
routing.AddIntervalToAssignment(interval);
// We are minimizing route durations by minimizing route ends; so we can
// maximize order starts to pack them together.
routing.AddVariableMaximizedByFinalizer(order_start);
}
// Only one order can happen at the same time at a given location.
std::vector<int64_t> location_usage(stop_intervals.size(), 1);
solver->AddConstraint(solver->MakeCumulative(
stop_intervals, location_usage, 1, absl::StrCat("Client", stop)));
}
// Minimizing route duration.
for (int vehicle = 0; vehicle < manager.num_vehicles(); ++vehicle) {
routing.AddVariableMinimizedByFinalizer(
time_dimension.CumulVar(routing.End(vehicle)));
}
// Adding penalty costs to allow skipping orders.
const int64_t kPenalty = 100000;
const RoutingIndexManager::NodeIndex kFirstNodeAfterDepot(1);
for (RoutingIndexManager::NodeIndex order = kFirstNodeAfterDepot;
order < routing.nodes(); ++order) {
std::vector<int64_t> orders(1, manager.NodeToIndex(order));
routing.AddDisjunction(orders, kPenalty);
}
// Solve, returns a solution if any (owned by RoutingModel).
RoutingSearchParameters parameters = DefaultRoutingSearchParameters();
CHECK(google::protobuf::TextFormat::MergeFromString(
absl::GetFlag(FLAGS_routing_search_parameters), ¶meters));
const Assignment* solution = routing.SolveWithParameters(parameters);
if (solution != nullptr) {
DisplayPlan(manager, routing, *solution, /*use_same_vehicle_costs=*/false,
/*max_nodes_per_group=*/0, /*same_vehicle_cost=*/0,
routing.GetDimensionOrDie(kCapacity),
routing.GetDimensionOrDie(kTime));
LOG(INFO) << "Stop intervals:";
for (IntervalVar* const interval : intervals) {
if (solution->PerformedValue(interval)) {
LOG(INFO) << interval->name() << ": " << solution->StartValue(interval);
}
}
} else {
LOG(INFO) << "No solution found.";
}
return EXIT_SUCCESS;
}