forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sat_runner.cc
458 lines (411 loc) · 17.2 KB
/
sat_runner.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstdint>
#include <cstdlib>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/flags/flag.h"
#include "absl/random/random.h"
#include "absl/status/status.h"
#include "absl/strings/match.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "examples/cpp/opb_reader.h"
#include "examples/cpp/sat_cnf_reader.h"
#include "google/protobuf/text_format.h"
#include "ortools/algorithms/sparse_permutation.h"
#include "ortools/base/flags.h"
#include "ortools/base/helpers.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/base/timer.h"
#include "ortools/linear_solver/linear_solver.pb.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/mps_reader.h"
#include "ortools/lp_data/proto_utils.h"
#include "ortools/sat/boolean_problem.h"
#include "ortools/sat/boolean_problem.pb.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/lp_utils.h"
#include "ortools/sat/model.h"
#include "ortools/sat/optimization.h"
#include "ortools/sat/pb_constraint.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/sat/simplification.h"
#include "ortools/sat/symmetry.h"
#include "ortools/util/file_util.h"
#include "ortools/util/logging.h"
#include "ortools/util/strong_integers.h"
#include "ortools/util/time_limit.h"
ABSL_FLAG(
std::string, input, "",
"Required: input file of the problem to solve. Many format are supported:"
".cnf (sat, max-sat, weighted max-sat), .opb (pseudo-boolean sat/optim) "
"and by default the LinearBooleanProblem proto (binary or text).");
ABSL_FLAG(
std::string, output, "",
"If non-empty, write the input problem as a LinearBooleanProblem proto to "
"this file. By default it uses the binary format except if the file "
"extension is '.txt'. If the problem is SAT, a satisfiable assignment is "
"also written to the file.");
ABSL_FLAG(bool, output_cnf_solution, false,
"If true and the problem was solved to optimality, this output "
"the solution to stdout in cnf form.\n");
ABSL_FLAG(std::string, params, "",
"Parameters for the sat solver in a text format of the "
"SatParameters proto, example: --params=use_conflicts:true.");
ABSL_FLAG(bool, strict_validity, false,
"If true, stop if the given input is invalid (duplicate literals, "
"out of range, zero cofficients, etc.)");
ABSL_FLAG(
std::string, lower_bound, "",
"If not empty, look for a solution with an objective value >= this bound.");
ABSL_FLAG(
std::string, upper_bound, "",
"If not empty, look for a solution with an objective value <= this bound.");
ABSL_FLAG(bool, fu_malik, false,
"If true, search the optimal solution with the Fu & Malik algo.");
ABSL_FLAG(bool, wpm1, false,
"If true, search the optimal solution with the WPM1 algo.");
ABSL_FLAG(bool, qmaxsat, false,
"If true, search the optimal solution with a linear scan and "
" the cardinality encoding used in qmaxsat.");
ABSL_FLAG(bool, core_enc, false,
"If true, search the optimal solution with the core-based "
"cardinality encoding algo.");
ABSL_FLAG(bool, linear_scan, false,
"If true, search the optimal solution with the linear scan algo.");
ABSL_FLAG(int, randomize, 500,
"If positive, solve that many times the problem with a random "
"decision heuristic before trying to optimize it.");
ABSL_FLAG(bool, use_symmetry, false,
"If true, find and exploit the eventual symmetries "
"of the problem.");
ABSL_FLAG(bool, presolve, true,
"Only work on pure SAT problem. If true, presolve the problem.");
ABSL_FLAG(bool, probing, false, "If true, presolve the problem using probing.");
ABSL_FLAG(bool, use_cp_model, true,
"Whether to interpret everything as a CpModelProto or "
"to read by default a CpModelProto.");
ABSL_FLAG(bool, reduce_memory_usage, false,
"If true, do not keep a copy of the original problem in memory."
"This reduce the memory usage, but disable the solution cheking at "
"the end.");
namespace operations_research {
namespace sat {
namespace {
// Returns a trivial best bound. The best bound corresponds to the lower bound
// (resp. upper bound) in case of a minimization (resp. maximization) problem.
double GetScaledTrivialBestBound(const LinearBooleanProblem& problem) {
Coefficient best_bound(0);
const LinearObjective& objective = problem.objective();
for (const int64_t value : objective.coefficients()) {
if (value < 0) best_bound += Coefficient(value);
}
return AddOffsetAndScaleObjectiveValue(problem, best_bound);
}
bool LoadBooleanProblem(const std::string& filename,
LinearBooleanProblem* problem, CpModelProto* cp_model) {
if (absl::EndsWith(filename, ".opb") ||
absl::EndsWith(filename, ".opb.bz2")) {
OpbReader reader;
if (!reader.Load(filename, problem)) {
LOG(FATAL) << "Cannot load file '" << filename << "'.";
}
} else if (absl::EndsWith(filename, ".cnf") ||
absl::EndsWith(filename, ".cnf.gz") ||
absl::EndsWith(filename, ".wcnf") ||
absl::EndsWith(filename, ".wcnf.gz")) {
SatCnfReader reader;
if (absl::GetFlag(FLAGS_fu_malik) || absl::GetFlag(FLAGS_linear_scan) ||
absl::GetFlag(FLAGS_wpm1) || absl::GetFlag(FLAGS_qmaxsat) ||
absl::GetFlag(FLAGS_core_enc)) {
reader.InterpretCnfAsMaxSat(true);
}
if (absl::GetFlag(FLAGS_use_cp_model)) {
if (!reader.Load(filename, cp_model)) {
LOG(FATAL) << "Cannot load file '" << filename << "'.";
}
} else {
if (!reader.Load(filename, problem)) {
LOG(FATAL) << "Cannot load file '" << filename << "'.";
}
}
} else if (absl::GetFlag(FLAGS_use_cp_model)) {
LOG(INFO) << "Reading a CpModelProto.";
*cp_model = ReadFileToProtoOrDie<CpModelProto>(filename);
} else {
LOG(INFO) << "Reading a LinearBooleanProblem.";
*problem = ReadFileToProtoOrDie<LinearBooleanProblem>(filename);
}
return true;
}
std::string SolutionString(const LinearBooleanProblem& problem,
const std::vector<bool>& assignment) {
std::string output;
BooleanVariable limit(problem.original_num_variables());
for (BooleanVariable index(0); index < limit; ++index) {
if (index > 0) output += " ";
absl::StrAppend(&output,
Literal(index, assignment[index.value()]).SignedValue());
}
return output;
}
// To benefit from the operations_research namespace, we put all the main() code
// here.
int Run() {
SatParameters parameters;
if (absl::GetFlag(FLAGS_input).empty()) {
LOG(FATAL) << "Please supply a data file with --input=";
}
// Parse the --params flag.
parameters.set_log_search_progress(true);
if (!absl::GetFlag(FLAGS_params).empty()) {
CHECK(google::protobuf::TextFormat::MergeFromString(
absl::GetFlag(FLAGS_params), ¶meters))
<< absl::GetFlag(FLAGS_params);
}
// Initialize the solver.
std::unique_ptr<SatSolver> solver(new SatSolver());
solver->SetParameters(parameters);
// Read the problem.
LinearBooleanProblem problem;
CpModelProto cp_model;
if (!LoadBooleanProblem(absl::GetFlag(FLAGS_input), &problem, &cp_model)) {
CpSolverResponse response;
response.set_status(CpSolverStatus::MODEL_INVALID);
return EXIT_SUCCESS;
}
if (!absl::GetFlag(FLAGS_use_cp_model)) {
LOG(INFO) << "Converting to CpModelProto ...";
cp_model = BooleanProblemToCpModelproto(problem);
}
// TODO(user): clean this hack. Ideally LinearBooleanProblem should be
// completely replaced by the more general CpModelProto.
if (absl::GetFlag(FLAGS_use_cp_model)) {
problem.Clear(); // We no longer need it, release memory.
Model model;
model.Add(NewSatParameters(parameters));
const CpSolverResponse response = SolveCpModel(cp_model, &model);
if (!absl::GetFlag(FLAGS_output).empty()) {
if (absl::EndsWith(absl::GetFlag(FLAGS_output), "txt")) {
CHECK_OK(file::SetTextProto(absl::GetFlag(FLAGS_output), response,
file::Defaults()));
} else {
CHECK_OK(file::SetBinaryProto(absl::GetFlag(FLAGS_output), response,
file::Defaults()));
}
}
// The SAT competition requires a particular exit code and since we don't
// really use it for any other purpose, we comply.
if (response.status() == CpSolverStatus::OPTIMAL) return 10;
if (response.status() == CpSolverStatus::FEASIBLE) return 10;
if (response.status() == CpSolverStatus::INFEASIBLE) return 20;
return EXIT_SUCCESS;
}
if (absl::GetFlag(FLAGS_strict_validity)) {
const absl::Status status = ValidateBooleanProblem(problem);
if (!status.ok()) {
LOG(ERROR) << "Invalid Boolean problem: " << status.message();
return EXIT_FAILURE;
}
}
// Count the time from there.
WallTimer wall_timer;
UserTimer user_timer;
wall_timer.Start();
user_timer.Start();
double scaled_best_bound = GetScaledTrivialBestBound(problem);
// Probing.
SatPostsolver probing_postsolver(problem.num_variables());
LinearBooleanProblem original_problem;
if (absl::GetFlag(FLAGS_probing)) {
// TODO(user): This is nice for testing, but consumes memory.
original_problem = problem;
ProbeAndSimplifyProblem(&probing_postsolver, &problem);
}
// Load the problem into the solver.
if (absl::GetFlag(FLAGS_reduce_memory_usage)) {
if (!LoadAndConsumeBooleanProblem(&problem, solver.get())) {
LOG(INFO) << "UNSAT when loading the problem.";
}
} else {
if (!LoadBooleanProblem(problem, solver.get())) {
LOG(INFO) << "UNSAT when loading the problem.";
}
}
auto strtoint64 = [](const std::string& word) {
int64_t value = 0;
if (!word.empty()) CHECK(absl::SimpleAtoi(word, &value));
return value;
};
if (!AddObjectiveConstraint(
problem, !absl::GetFlag(FLAGS_lower_bound).empty(),
Coefficient(strtoint64(absl::GetFlag(FLAGS_lower_bound))),
!absl::GetFlag(FLAGS_upper_bound).empty(),
Coefficient(strtoint64(absl::GetFlag(FLAGS_upper_bound))),
solver.get())) {
LOG(INFO) << "UNSAT when setting the objective constraint.";
}
// Symmetries!
//
// TODO(user): To make this compatible with presolve, we just need to run
// it after the presolve step.
if (absl::GetFlag(FLAGS_use_symmetry)) {
CHECK(!absl::GetFlag(FLAGS_reduce_memory_usage)) << "incompatible";
CHECK(!absl::GetFlag(FLAGS_presolve)) << "incompatible";
LOG(INFO) << "Finding symmetries of the problem.";
std::vector<std::unique_ptr<SparsePermutation>> generators;
FindLinearBooleanProblemSymmetries(problem, &generators);
std::unique_ptr<SymmetryPropagator> propagator(new SymmetryPropagator);
for (int i = 0; i < generators.size(); ++i) {
propagator->AddSymmetry(std::move(generators[i]));
}
solver->AddPropagator(propagator.get());
solver->TakePropagatorOwnership(std::move(propagator));
}
// Optimize?
std::vector<bool> solution;
SatSolver::Status result = SatSolver::LIMIT_REACHED;
if (absl::GetFlag(FLAGS_fu_malik) || absl::GetFlag(FLAGS_linear_scan) ||
absl::GetFlag(FLAGS_wpm1) || absl::GetFlag(FLAGS_qmaxsat) ||
absl::GetFlag(FLAGS_core_enc)) {
if (absl::GetFlag(FLAGS_randomize) > 0 &&
(absl::GetFlag(FLAGS_linear_scan) || absl::GetFlag(FLAGS_qmaxsat))) {
CHECK(!absl::GetFlag(FLAGS_reduce_memory_usage)) << "incompatible";
absl::BitGen bitgen;
result = SolveWithRandomParameters(STDOUT_LOG, problem,
absl::GetFlag(FLAGS_randomize), bitgen,
solver.get(), &solution);
}
if (result == SatSolver::LIMIT_REACHED) {
if (absl::GetFlag(FLAGS_qmaxsat)) {
solver = std::make_unique<SatSolver>();
solver->SetParameters(parameters);
CHECK(LoadBooleanProblem(problem, solver.get()));
result = SolveWithCardinalityEncoding(STDOUT_LOG, problem, solver.get(),
&solution);
} else if (absl::GetFlag(FLAGS_core_enc)) {
result = SolveWithCardinalityEncodingAndCore(STDOUT_LOG, problem,
solver.get(), &solution);
} else if (absl::GetFlag(FLAGS_fu_malik)) {
result = SolveWithFuMalik(STDOUT_LOG, problem, solver.get(), &solution);
} else if (absl::GetFlag(FLAGS_wpm1)) {
result = SolveWithWPM1(STDOUT_LOG, problem, solver.get(), &solution);
} else if (absl::GetFlag(FLAGS_linear_scan)) {
result =
SolveWithLinearScan(STDOUT_LOG, problem, solver.get(), &solution);
}
}
} else {
// Only solve the decision version.
parameters.set_log_search_progress(true);
solver->SetParameters(parameters);
if (absl::GetFlag(FLAGS_presolve)) {
std::unique_ptr<TimeLimit> time_limit =
TimeLimit::FromParameters(parameters);
SolverLogger logger;
result = SolveWithPresolve(&solver, time_limit.get(), &solution,
/*drat_proof_handler=*/nullptr, &logger);
if (result == SatSolver::FEASIBLE) {
CHECK(IsAssignmentValid(problem, solution));
}
} else {
result = solver->Solve();
if (result == SatSolver::FEASIBLE) {
ExtractAssignment(problem, *solver, &solution);
CHECK(IsAssignmentValid(problem, solution));
}
}
}
// Print the solution status.
if (result == SatSolver::FEASIBLE) {
if (absl::GetFlag(FLAGS_fu_malik) || absl::GetFlag(FLAGS_linear_scan) ||
absl::GetFlag(FLAGS_wpm1) || absl::GetFlag(FLAGS_core_enc)) {
absl::PrintF("s OPTIMUM FOUND\n");
CHECK(!solution.empty());
const Coefficient objective = ComputeObjectiveValue(problem, solution);
scaled_best_bound = AddOffsetAndScaleObjectiveValue(problem, objective);
// Postsolve.
if (absl::GetFlag(FLAGS_probing)) {
solution = probing_postsolver.PostsolveSolution(solution);
problem = original_problem;
}
} else {
absl::PrintF("s SATISFIABLE\n");
}
// Check and output the solution.
CHECK(IsAssignmentValid(problem, solution));
if (absl::GetFlag(FLAGS_output_cnf_solution)) {
absl::PrintF("v %s\n", SolutionString(problem, solution));
}
if (!absl::GetFlag(FLAGS_output).empty()) {
CHECK(!absl::GetFlag(FLAGS_reduce_memory_usage)) << "incompatible";
if (result == SatSolver::FEASIBLE) {
StoreAssignment(solver->Assignment(), problem.mutable_assignment());
}
if (absl::EndsWith(absl::GetFlag(FLAGS_output), ".txt")) {
CHECK_OK(file::SetTextProto(absl::GetFlag(FLAGS_output), problem,
file::Defaults()));
} else {
CHECK_OK(file::SetBinaryProto(absl::GetFlag(FLAGS_output), problem,
file::Defaults()));
}
}
}
if (result == SatSolver::INFEASIBLE) {
absl::PrintF("s UNSATISFIABLE\n");
}
// Print status.
absl::PrintF("c status: %s\n", SatStatusString(result));
// Print objective value.
if (solution.empty()) {
absl::PrintF("c objective: na\n");
absl::PrintF("c best bound: na\n");
} else {
const Coefficient objective = ComputeObjectiveValue(problem, solution);
absl::PrintF("c objective: %.16g\n",
AddOffsetAndScaleObjectiveValue(problem, objective));
absl::PrintF("c best bound: %.16g\n", scaled_best_bound);
}
// Print final statistics.
absl::PrintF("c booleans: %d\n", solver->NumVariables());
absl::PrintF("c conflicts: %d\n", solver->num_failures());
absl::PrintF("c branches: %d\n", solver->num_branches());
absl::PrintF("c propagations: %d\n", solver->num_propagations());
absl::PrintF("c walltime: %f\n", wall_timer.Get());
absl::PrintF("c usertime: %f\n", user_timer.Get());
absl::PrintF("c deterministic_time: %f\n", solver->deterministic_time());
return EXIT_SUCCESS;
}
} // namespace
} // namespace sat
} // namespace operations_research
static const char kUsage[] =
"Usage: see flags.\n"
"This program solves a given Boolean linear problem.";
int main(int argc, char** argv) {
// By default, we want to show how the solver progress. Note that this needs
// to be set before InitGoogle() which has the nice side-effect of allowing
// the user to override it.
InitGoogle(kUsage, &argc, &argv, /*remove_flags=*/true);
absl::SetFlag(&FLAGS_alsologtostderr, true);
return operations_research::sat::Run();
}