forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
strawberry_fields_with_column_generation.cc
662 lines (609 loc) · 26.2 KB
/
strawberry_fields_with_column_generation.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Demonstration of column generation using LP toolkit.
//
// Column generation is the technique of generating columns (aka
// resource bundles aka variables) of the constraint matrix
// incrementally guided by feedback from the constraint duals
// (cost-of-resources). Frequently this lets one solve large problems
// efficiently, e.g. problems where the number of potential columns is
// exponentially large.
//
// Solves a covering problem taken from ITA Software recruiting web
// site:
//
// "Strawberries are growing in the cells of a rectangular field
// (grid). You want to build greenhouses to enclose the
// strawberries. Greenhouses are rectangular, axis-aligned with the
// field (i.e., not diagonal), and may not overlap. The cost of each
// greenhouse is $10 plus $1 per unit of area covered."
//
// Variables:
//
// for each Box (greenhouse), continuous variable b{x1,y1,x2,y2} in [0,1]
//
// Constraints:
//
// box limit:
// sum b{x1,y1,x2,y2) <= MAX_BOXES
// non-overlap (for each cell x,y):
// sum b{x1,y1,x2,y2} <= 1 (summed over containing x1<=x<=x2, y1<=y<=y2)
// coverage (for each cell x,y with a strawberry):
// sum b{x1,y1,x2,y2} = 1 (summed over containing x1<=x<=x2, y1<=y<=y2)
//
// Since the number of possible boxes is O(d^4) where d is the linear
// dimension, starts from singleton column (box) covering entire grid,
// ensuring solvability. Then iteratively the problem is solved and
// the constraint duals (aka reduced costs) used to guide the
// generation of a single new column (box), until convergence or a
// maximum number of iterations.
//
// No attempt is made to force integrality.
#include <cstdio>
#include <cstring> // strlen
#include <map>
#include <memory>
#include <ostream>
#include <string>
#include <utility>
#include <vector>
#include "absl/strings/str_format.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
#include "ortools/linear_solver/linear_solver.h"
ABSL_FLAG(bool, colgen_verbose, false, "print verbosely");
ABSL_FLAG(bool, colgen_complete, false, "generate all columns initially");
ABSL_FLAG(int, colgen_max_iterations, 500, "max iterations");
ABSL_FLAG(std::string, colgen_solver, "glop", "solver - glop (default) or clp");
ABSL_FLAG(int, colgen_instance, -1, "Which instance to solve (0 - 9)");
namespace operations_research {
// ---------- Data Instances ----------
struct Instance {
int max_boxes;
int width;
int height;
const char* grid;
};
Instance kInstances[] = {{4, 22, 6,
"..@@@@@..............."
"..@@@@@@........@@@..."
".....@@@@@......@@@..."
".......@@@@@@@@@@@@..."
".........@@@@@........"
".........@@@@@........"},
{3, 13, 10,
"............."
"............."
"............."
"...@@@@......"
"...@@@@......"
"...@@@@......"
".......@@@..."
".......@@@..."
".......@@@..."
"............."},
{4, 13, 9,
"............."
"..@.@.@......"
"...@.@.@....."
"..@.@.@......"
"..@.@.@......"
"...@.@.@....."
"....@.@......"
"..........@@@"
"..........@@@"},
{4, 13, 9,
".........@..."
".........@..."
"@@@@@@@@@@..."
"..@......@..."
"..@......@..."
"..@......@..."
"..@@@@@@@@@@@"
"..@.........."
"..@.........."},
{7, 25, 14,
"........................."
"..@@@@@@@@@@@@@@@@@@@@..."
"..@@@@@@@@@@@@@@@@@@@@..."
"..@@.................@..."
"..@@.................@..."
"..@@.......@@@.......@.@."
"..@@.......@@@.......@..."
"..@@...@@@@@@@@@@@@@@@..."
"..@@...@@@@@@@@@@@@@@@..."
"..@@.......@@@.......@..."
"..@@.......@@@.......@..."
"..@@.................@..."
"..@@.................@..."
"........................."},
{6, 25, 16,
"........................."
"......@@@@@@@@@@@@@......"
"........................."
".....@..........@........"
".....@..........@........"
".....@......@............"
".....@......@.@@@@@@@...."
".....@......@............"
".....@......@.@@@@@@@...."
".....@......@............"
"....@@@@....@............"
"....@@@@....@............"
"..@@@@@@....@............"
"..@@@.......@............"
"..@@@...................."
"..@@@@@@@@@@@@@@@@@@@@@@@"},
{5, 40, 18,
"........................................"
"........................................"
"...@@@@@@..............................."
"...@@@@@@..............................."
"...@@@@@@..............................."
"...@@@@@@.........@@@@@@@@@@............"
"...@@@@@@.........@@@@@@@@@@............"
"..................@@@@@@@@@@............"
"..................@@@@@@@@@@............"
".............@@@@@@@@@@@@@@@............"
".............@@@@@@@@@@@@@@@............"
"........@@@@@@@@@@@@...................."
"........@@@@@@@@@@@@...................."
"........@@@@@@.........................."
"........@@@@@@.........................."
"........................................"
"........................................"
"........................................"},
{8, 40, 18,
"........................................"
"..@@.@.@.@.............................."
"..@@.@.@.@...............@.............."
"..@@.@.@.@............@................."
"..@@.@.@.@.............................."
"..@@.@.@.@.................@............"
"..@@.@..................@..............."
"..@@.@.................................."
"..@@.@.................................."
"..@@.@................@@@@.............."
"..@@.@..............@@@@@@@@............"
"..@@.@.................................."
"..@@.@..............@@@@@@@@............"
"..@@.@.................................."
"..@@.@................@@@@.............."
"..@@.@.................................."
"..@@.@.................................."
"........................................"},
{10, 40, 19,
"@@@@@..................................."
"@@@@@..................................."
"@@@@@..................................."
"@@@@@..................................."
"@@@@@..................................."
"@@@@@...........@@@@@@@@@@@............."
"@@@@@...........@@@@@@@@@@@............."
"....................@@@@................"
"....................@@@@................"
"....................@@@@................"
"....................@@@@................"
"....................@@@@................"
"...............@@@@@@@@@@@@@@..........."
"...............@@@@@@@@@@@@@@..........."
".......@@@@@@@@@@@@@@@@@@@@@@..........."
".......@@@@@@@@@........................"
"........................................"
"........................................"
"........................................"},
{10, 40, 25,
"...................@...................."
"...............@@@@@@@@@................"
"............@@@.........@@@............."
"...........@...............@............"
"..........@.................@..........."
".........@...................@.........."
".........@...................@.........."
".........@.....@@......@@....@.........."
"........@.....@@@@....@@@@....@........."
"........@.....................@........."
"........@.....................@........."
"........@..........@@.........@........."
".......@@..........@@.........@@........"
"........@.....................@........."
"........@.....................@........."
"........@......@@@@@@@@@......@........."
"........@......@@@@@@@@@......@........."
".........@...................@.........."
".........@...................@.........."
".........@...................@.........."
"..........@.................@..........."
"...........@...............@............"
"............@@@.........@@@............."
"...............@@@@@@@@@................"
"...................@...................."}};
const int kInstanceCount = 10;
// ---------- Box ---------
class Box {
public:
static constexpr int kAreaCost = 1;
static constexpr int kFixedCost = 10;
Box() {}
Box(int x_min, int x_max, int y_min, int y_max)
: x_min_(x_min), x_max_(x_max), y_min_(y_min), y_max_(y_max) {
CHECK_GE(x_max, x_min);
CHECK_GE(y_max, y_min);
}
int x_min() const { return x_min_; }
int x_max() const { return x_max_; }
int y_min() const { return y_min_; }
int y_max() const { return y_max_; }
// Lexicographic order
int Compare(const Box& box) const {
int c;
if ((c = (x_min() - box.x_min())) != 0) return c;
if ((c = (x_max() - box.x_max())) != 0) return c;
if ((c = (y_min() - box.y_min())) != 0) return c;
return y_max() - box.y_max();
}
bool Contains(int x, int y) const {
return x >= x_min() && x <= x_max() && y >= y_min() && y <= y_max();
}
int Cost() const {
return kAreaCost * (x_max() - x_min() + 1) * (y_max() - y_min() + 1) +
kFixedCost;
}
std::string DebugString() const {
return absl::StrFormat("[%d,%dx%d,%d]c%d", x_min(), y_min(), x_max(),
y_max(), Cost());
}
private:
int x_min_;
int x_max_;
int y_min_;
int y_max_;
};
struct BoxLessThan {
bool operator()(const Box& b1, const Box& b2) const {
return b1.Compare(b2) < 0;
}
};
// ---------- Covering Problem ---------
class CoveringProblem {
public:
// Grid is a row-major string of length width*height with '@' for an
// occupied cell (strawberry) and '.' for an empty cell. Solver is
// not owned.
CoveringProblem(MPSolver* const solver, const Instance& instance)
: solver_(solver),
max_boxes_(instance.max_boxes),
width_(instance.width),
height_(instance.height),
grid_(instance.grid) {}
// Constructs initial variables and constraints. Initial column
// (box) covers entire grid, ensuring feasibility.
bool Init() {
// Check consistency.
int size = strlen(grid_);
if (size != area()) {
return false;
}
for (int i = 0; i < size; ++i) {
char c = grid_[i];
if ((c != '@') && (c != '.')) return false;
}
AddCellConstraints(); // sum for every cell is <=1 or =1
AddMaxBoxesConstraint(); // sum of box variables is <= max_boxes()
if (!absl::GetFlag(FLAGS_colgen_complete)) {
AddBox(Box(0, width() - 1, 0, height() - 1)); // grid-covering box
} else {
// Naive alternative to column generation - generate all boxes;
// works fine for smaller problems, too slow for big.
for (int y_min = 0; y_min < height(); ++y_min) {
for (int y_max = y_min; y_max < height(); ++y_max) {
for (int x_min = 0; x_min < width(); ++x_min) {
for (int x_max = x_min; x_max < width(); ++x_max) {
AddBox(Box(x_min, x_max, y_min, y_max));
}
}
}
}
}
return true;
}
int width() const { return width_; }
int height() const { return height_; }
int area() const { return width() * height(); }
int max_boxes() const { return max_boxes_; }
bool IsCellOccupied(int x, int y) const { return grid_[index(x, y)] == '@'; }
// Calculates reduced costs for each possible Box and if any is
// negative (improves cost), returns reduced cost and set target to
// the most-negative (steepest descent) one - otherwise returns 0..
//
// For a problem in standard form 'minimize c*x s.t. Ax<=b, x>=0'
// the reduced cost vector is c - transp(y) * A where y is the dual
// cost column vector.
//
// For this covering problem, in which all coefficients in A are 0
// or 1, this reduces to:
//
// reduced_cost(box) =
//
// box.Cost() - sum_{enclosed cell} cell_constraint->dual_value()
// - max_boxes_constraint_->dual_value()
//
// Since there are O(d^4) boxes, we don't also want O(d^2) sum for
// each, so pre-calculate sums of cell duals for all rectangles with
// upper-left at 0, 0, and use these to calculate the sum in
// constant time using the standard inclusion-exclusion trick.
double GetOptimalBox(Box* const target) {
// Cost change threshold for new Box
const double kCostChangeThreshold = -.01;
// Precomputes the sum of reduced costs for every upper-left
// rectangle.
std::vector<double> upper_left_sums(area());
ComputeUpperLeftSums(&upper_left_sums);
const double max_boxes_dual = max_boxes_constraint_->dual_value();
double best_reduced_cost = kCostChangeThreshold;
Box best_box;
for (int y_min = 0; y_min < height(); ++y_min) {
for (int y_max = y_min; y_max < height(); ++y_max) {
for (int x_min = 0; x_min < width(); ++x_min) {
for (int x_max = x_min; x_max < width(); ++x_max) {
Box box(x_min, x_max, y_min, y_max);
const double cell_coverage_dual = // inclusion-exclusion
+zero_access(upper_left_sums, x_max, y_max) -
zero_access(upper_left_sums, x_max, y_min - 1) -
zero_access(upper_left_sums, x_min - 1, y_max) +
zero_access(upper_left_sums, x_min - 1, y_min - 1);
// All coefficients for new column are 1, so no need to
// multiply constraint duals by any coefficients when
// computing the reduced cost.
const double reduced_cost =
box.Cost() - (cell_coverage_dual + max_boxes_dual);
if (reduced_cost < best_reduced_cost) {
// Even with negative reduced cost, the box may already
// exist, and even be basic (part of solution)! This
// counterintuitive situation is due to the problem's
// many redundant linear equality constraints: many
// steepest-edge pivot moves will be of zero-length.
// Ideally one would want to check the length of the
// move but that is difficult without access to the
// internals of the solver (e.g., access to B^-1 in the
// simplex algorithm).
if (boxes_.find(box) == boxes_.end()) {
best_reduced_cost = reduced_cost;
best_box = box;
}
}
}
}
}
}
if (best_reduced_cost < kCostChangeThreshold) {
if (target) {
*target = best_box;
}
return best_reduced_cost;
}
return 0;
}
// Add continuous [0,1] box variable with box.Cost() as objective
// coefficient. Add to cell constraint of all enclosed cells.
MPVariable* AddBox(const Box& box) {
CHECK(boxes_.find(box) == boxes_.end());
MPVariable* const var = solver_->MakeNumVar(0., 1., box.DebugString());
solver_->MutableObjective()->SetCoefficient(var, box.Cost());
max_boxes_constraint_->SetCoefficient(var, 1.0);
for (int y = box.y_min(); y <= box.y_max(); ++y) {
for (int x = box.x_min(); x <= box.x_max(); ++x) {
cell(x, y)->SetCoefficient(var, 1.0);
}
}
boxes_[box] = var;
return var;
}
std::string PrintGrid() const {
std::string output =
absl::StrFormat("width = %d, height = %d, max_boxes = %d\n", width_,
height_, max_boxes_);
for (int y = 0; y < height_; ++y) {
absl::StrAppendFormat(&output, "%s\n",
std::string(grid_ + width_ * y, width_));
}
return output;
}
// Prints covering - total cost, those variables with non-zero value,
// and graphical depiction of covering using upper case letters for
// integral coverage and lower case for coverage using combination
// of fractional boxes.
std::string PrintCovering() const {
static const double kTolerance = 1e-5;
std::string output =
absl::StrFormat("cost = %f\n", solver_->Objective().Value());
std::unique_ptr<char[]> display(new char[(width_ + 1) * height_ + 1]);
for (int y = 0; y < height_; ++y) {
memcpy(display.get() + y * (width_ + 1), grid_ + width_ * y,
width_); // Copy the original line.
display[y * (width_ + 1) + width_] = '\n';
}
display[height_ * (width_ + 1)] = '\0';
int active_box_index = 0;
for (BoxTable::const_iterator i = boxes_.begin(); i != boxes_.end(); ++i) {
const double value = i->second->solution_value();
if (value > kTolerance) {
const char box_character =
(i->second->solution_value() >= (1. - kTolerance) ? 'A' : 'a') +
active_box_index++;
absl::StrAppendFormat(&output, "%c: box %s with value %f\n",
box_character, i->first.DebugString(), value);
const Box& box = i->first;
for (int x = box.x_min(); x <= box.x_max(); ++x) {
for (int y = box.y_min(); y <= box.y_max(); ++y) {
display[x + y * (width_ + 1)] = box_character;
}
}
}
}
output.append(display.get());
return output;
}
protected:
int index(int x, int y) const { return width_ * y + x; }
MPConstraint* cell(int x, int y) { return cells_[index(x, y)]; }
const MPConstraint* cell(int x, int y) const { return cells_[index(x, y)]; }
// Adds constraints that every cell is covered at most once, exactly
// once if occupied.
void AddCellConstraints() {
cells_.resize(area());
for (int y = 0; y < height(); ++y) {
for (int x = 0; x < width(); ++x) {
cells_[index(x, y)] =
solver_->MakeRowConstraint(IsCellOccupied(x, y) ? 1. : 0., 1.);
}
}
}
// Adds constraint on maximum number of boxes used to cover.
void AddMaxBoxesConstraint() {
max_boxes_constraint_ = solver_->MakeRowConstraint(0., max_boxes());
}
// Gets 2d array element, returning 0 if out-of-bounds.
double zero_access(const std::vector<double>& array, int x, int y) const {
if (x < 0 || y < 0) {
return 0;
}
return array[index(x, y)];
}
// Precomputes the sum of reduced costs for every upper-left
// rectangle.
void ComputeUpperLeftSums(std::vector<double>* upper_left_sums) const {
for (int y = 0; y < height(); ++y) {
for (int x = 0; x < width(); ++x) {
upper_left_sums->operator[](index(x, y)) =
cell(x, y)->dual_value() + zero_access(*upper_left_sums, x - 1, y) +
zero_access(*upper_left_sums, x, y - 1) -
zero_access(*upper_left_sums, x - 1, y - 1);
}
}
}
typedef std::map<Box, MPVariable*, BoxLessThan> BoxTable;
MPSolver* const solver_; // not owned
const int max_boxes_;
const int width_;
const int height_;
const char* const grid_;
std::vector<MPConstraint*> cells_;
BoxTable boxes_;
MPConstraint* max_boxes_constraint_;
};
// ---------- Main Solve Method ----------
// Solves iteratively using delayed column generation, up to maximum
// number of steps.
void SolveInstance(const Instance& instance,
MPSolver::OptimizationProblemType solver_type) {
// Prepares the solver.
MPSolver solver("ColumnGeneration", solver_type);
solver.SuppressOutput();
solver.MutableObjective()->SetMinimization();
// Construct problem.
CoveringProblem problem(&solver, instance);
CHECK(problem.Init());
LOG(INFO) << "Initial problem:\n" << problem.PrintGrid();
int step_number = 0;
while (step_number < absl::GetFlag(FLAGS_colgen_max_iterations)) {
if (absl::GetFlag(FLAGS_colgen_verbose)) {
LOG(INFO) << "Step number " << step_number;
}
// Solve with existing columns.
CHECK_EQ(MPSolver::OPTIMAL, solver.Solve());
if (absl::GetFlag(FLAGS_colgen_verbose)) {
LOG(INFO) << problem.PrintCovering();
}
// Find optimal new column to add, or stop if none.
Box box;
const double reduced_cost = problem.GetOptimalBox(&box);
if (reduced_cost >= 0) {
break;
}
// Add new column to problem.
if (absl::GetFlag(FLAGS_colgen_verbose)) {
LOG(INFO) << "Adding " << box.DebugString()
<< ", reduced_cost =" << reduced_cost;
}
problem.AddBox(box);
++step_number;
}
if (step_number >= absl::GetFlag(FLAGS_colgen_max_iterations)) {
// Solve one last time with all generated columns.
CHECK_EQ(MPSolver::OPTIMAL, solver.Solve());
}
LOG(INFO) << step_number << " columns added";
LOG(INFO) << "Final coverage: " << problem.PrintCovering();
}
} // namespace operations_research
int main(int argc, char** argv) {
std::string usage = "column_generation\n";
usage += " --colgen_verbose print verbosely\n";
usage += " --colgen_max_iterations <n> max columns to generate\n";
usage += " --colgen_complete generate all columns at start\n";
InitGoogle(usage.c_str(), &argc, &argv, true);
operations_research::MPSolver::OptimizationProblemType solver_type;
bool found = false;
#if defined(USE_CLP)
if (absl::GetFlag(FLAGS_colgen_solver) == "clp") {
solver_type = operations_research::MPSolver::CLP_LINEAR_PROGRAMMING;
found = true;
}
#endif // USE_CLP
#if defined(USE_GLOP)
if (absl::GetFlag(FLAGS_colgen_solver) == "glop") {
solver_type = operations_research::MPSolver::GLOP_LINEAR_PROGRAMMING;
found = true;
}
#endif // USE_GLOP
if (absl::GetFlag(FLAGS_colgen_solver) == "xpress") {
solver_type = operations_research::MPSolver::XPRESS_LINEAR_PROGRAMMING;
found = true;
}
#if defined(USE_CPLEX)
if (absl::GetFlag(FLAGS_colgen_solver) == "cplex") {
solver_type = operations_research::MPSolver::CPLEX_LINEAR_PROGRAMMING;
found = true;
}
#endif
#if defined(USE_SIRIUS)
if (absl::GetFlag(FLAGS_colgen_solver) == "sirius") {
solver_type = operations_research::MPSolver::SIRIUS_LINEAR_PROGRAMMING;
found = true;
}
#endif
if (!found) {
LOG(ERROR) << "Unknown solver " << absl::GetFlag(FLAGS_colgen_solver);
return 1;
}
LOG(INFO) << "Chosen solver: " << absl::GetFlag(FLAGS_colgen_solver)
<< std::endl;
if (absl::GetFlag(FLAGS_colgen_instance) == -1) {
for (int i = 0; i < operations_research::kInstanceCount; ++i) {
const operations_research::Instance& instance =
operations_research::kInstances[i];
operations_research::SolveInstance(instance, solver_type);
}
} else {
CHECK_GE(absl::GetFlag(FLAGS_colgen_instance), 0);
CHECK_LT(absl::GetFlag(FLAGS_colgen_instance),
operations_research::kInstanceCount);
const operations_research::Instance& instance =
operations_research::kInstances[absl::GetFlag(FLAGS_colgen_instance)];
operations_research::SolveInstance(instance, solver_type);
}
return EXIT_SUCCESS;
}