forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pyflow_example.py
81 lines (71 loc) · 3.03 KB
/
pyflow_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/usr/bin/env python3
# Copyright 2010-2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MaxFlow and MinCostFlow examples."""
from absl import app
from ortools.graph.python import max_flow
from ortools.graph.python import min_cost_flow
def MaxFlow():
"""MaxFlow simple interface example."""
print('MaxFlow on a simple network.')
tails = [0, 0, 0, 0, 1, 2, 3, 3, 4]
heads = [1, 2, 3, 4, 3, 4, 4, 5, 5]
capacities = [5, 8, 5, 3, 4, 5, 6, 6, 4]
expected_total_flow = 10
smf = max_flow.SimpleMaxFlow()
for i in range(0, len(tails)):
smf.add_arc_with_capacity(tails[i], heads[i], capacities[i])
if smf.solve(0, 5) == smf.OPTIMAL:
print('Total flow', smf.optimal_flow(), '/', expected_total_flow)
for i in range(smf.num_arcs()):
print('From source %d to target %d: %d / %d' %
(smf.tail(i), smf.head(i), smf.flow(i), smf.capacity(i)))
print('Source side min-cut:', smf.get_source_side_min_cut())
print('Sink side min-cut:', smf.get_sink_side_min_cut())
else:
print('There was an issue with the max flow input.')
def MinCostFlow():
"""MinCostFlow simple interface example.
Note that this example is actually a linear sum assignment example and will
be more efficiently solved with the pywrapgraph.LinearSumAssignment class.
"""
print('MinCostFlow on 4x4 matrix.')
num_sources = 4
num_targets = 4
costs = [[90, 75, 75, 80], [35, 85, 55, 65], [125, 95, 90, 105],
[45, 110, 95, 115]]
expected_cost = 275
smcf = min_cost_flow.SimpleMinCostFlow()
for source in range(0, num_sources):
for target in range(0, num_targets):
smcf.add_arc_with_capacity_and_unit_cost(source,
num_sources + target, 1,
costs[source][target])
for node in range(0, num_sources):
smcf.set_node_supply(node, 1)
smcf.set_node_supply(num_sources + node, -1)
status = smcf.solve()
if status == smcf.OPTIMAL:
print('Total flow', smcf.optimal_cost(), '/', expected_cost)
for i in range(0, smcf.num_arcs()):
if smcf.flow(i) > 0:
print('From source %d to target %d: cost %d' %
(smcf.tail(i), smcf.head(i) - num_sources,
smcf.unit_cost(i)))
else:
print('There was an issue with the min cost flow input.')
def main(_=None):
MaxFlow()
MinCostFlow()
if __name__ == '__main__':
app.run(main)