forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dynamic_partition.cc
367 lines (327 loc) · 12.9 KB
/
dynamic_partition.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/algorithms/dynamic_partition.h"
#include <algorithm>
#include <cstdint>
#include <string>
#include <vector>
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "ortools/base/murmur.h"
namespace operations_research {
namespace {
uint64_t FprintOfInt32(int i) {
return util_hash::MurmurHash64(reinterpret_cast<const char*>(&i),
sizeof(int));
}
} // namespace
DynamicPartition::DynamicPartition(int num_elements) {
DCHECK_GE(num_elements, 0);
element_.assign(num_elements, -1);
index_of_.assign(num_elements, -1);
for (int i = 0; i < num_elements; ++i) {
element_[i] = i;
index_of_[i] = i;
}
part_of_.assign(num_elements, 0);
uint64_t fprint = 0;
for (int i = 0; i < num_elements; ++i) fprint ^= FprintOfInt32(i);
part_.push_back(Part(/*start_index=*/0, /*end_index=*/num_elements,
/*parent_part=*/0,
/*fprint=*/fprint));
}
DynamicPartition::DynamicPartition(
const std::vector<int>& initial_part_of_element) {
if (initial_part_of_element.empty()) return;
part_of_ = initial_part_of_element;
const int n = part_of_.size();
const int num_parts = 1 + *std::max_element(part_of_.begin(), part_of_.end());
DCHECK_EQ(0, *std::min_element(part_of_.begin(), part_of_.end()));
part_.resize(num_parts);
// Compute the part fingerprints.
for (int i = 0; i < n; ++i) part_[part_of_[i]].fprint ^= FprintOfInt32(i);
// Compute the actual start indices of each part, knowing that we'll sort
// them as they were given implicitly in "initial_part_of_element".
// The code looks a bit weird to do it in-place, with no additional memory.
for (int p = 0; p < num_parts; ++p) {
part_[p].end_index = 0; // Temporarily utilized as size_of_part.
part_[p].parent_part = p;
}
for (const int p : part_of_) ++part_[p].end_index; // size_of_part
int sum_part_sizes = 0;
for (int p = 0; p < num_parts; ++p) {
part_[p].start_index = sum_part_sizes;
sum_part_sizes += part_[p].end_index; // size of part.
}
// Now that we have the correct start indices, we set the end indices to the
// start indices, and incrementally add all elements to their part, adjusting
// the end indices as we go.
for (Part& part : part_) part.end_index = part.start_index;
element_.assign(n, -1);
index_of_.assign(n, -1);
for (int element = 0; element < n; ++element) {
Part* const part = &part_[part_of_[element]];
element_[part->end_index] = element;
index_of_[element] = part->end_index;
++part->end_index;
}
// Verify that we did it right.
// TODO(user): either remove this or factor it out if it can be used
// elsewhere.
DCHECK_EQ(0, part_[0].start_index);
DCHECK_EQ(NumElements(), part_[NumParts() - 1].end_index);
for (int p = 1; p < NumParts(); ++p) {
DCHECK_EQ(part_[p - 1].end_index, part_[p].start_index);
}
}
void DynamicPartition::Refine(const std::vector<int>& distinguished_subset) {
// tmp_counter_of_part_[i] will contain the number of
// elements in distinguished_subset that were part of part #i.
tmp_counter_of_part_.resize(NumParts(), 0);
// We remember the Parts that were actually affected.
tmp_affected_parts_.clear();
for (const int element : distinguished_subset) {
DCHECK_GE(element, 0);
DCHECK_LT(element, NumElements());
const int part = part_of_[element];
const int num_distinguished_elements_in_part = ++tmp_counter_of_part_[part];
// Is this the first time that we touch this element's part?
if (num_distinguished_elements_in_part == 1) {
// TODO(user): optimize the common singleton case.
tmp_affected_parts_.push_back(part);
}
// Move the element to the end of its current Part.
const int old_index = index_of_[element];
const int new_index =
part_[part].end_index - num_distinguished_elements_in_part;
DCHECK_GE(new_index, old_index)
<< "Duplicate element given to Refine(): " << element;
// Perform the swap, keeping index_of_ up to date.
index_of_[element] = new_index;
index_of_[element_[new_index]] = old_index;
std::swap(element_[old_index], element_[new_index]);
}
// Sort affected parts. This is important to behave as advertised in the .h.
// TODO(user): automatically switch to an O(N) sort when it's faster
// than this one, which is O(K log K) with K = tmp_affected_parts_.size().
std::sort(tmp_affected_parts_.begin(), tmp_affected_parts_.end());
// Iterate on each affected part and split it, or keep it intact if all
// of its elements were distinguished.
for (const int part : tmp_affected_parts_) {
const int start_index = part_[part].start_index;
const int end_index = part_[part].end_index;
const int split_index = end_index - tmp_counter_of_part_[part];
tmp_counter_of_part_[part] = 0; // Clean up after us.
DCHECK_GE(split_index, start_index);
DCHECK_LT(split_index, end_index);
// Do nothing if all elements were distinguished.
if (split_index == start_index) continue;
// Compute the fingerprint of the new part.
uint64_t new_fprint = 0;
for (int i = split_index; i < end_index; ++i) {
new_fprint ^= FprintOfInt32(element_[i]);
}
const int new_part = NumParts();
// Perform the split.
part_[part].end_index = split_index;
part_[part].fprint ^= new_fprint;
part_.push_back(Part(/*start_index*/ split_index, /*end_index*/ end_index,
/*parent_part*/ part, new_fprint));
for (const int element : ElementsInPart(new_part)) {
part_of_[element] = new_part;
}
}
}
void DynamicPartition::UndoRefineUntilNumPartsEqual(int original_num_parts) {
DCHECK_GE(NumParts(), original_num_parts);
DCHECK_GE(original_num_parts, 1);
while (NumParts() > original_num_parts) {
const int part_index = NumParts() - 1;
const Part& part = part_[part_index];
const int parent_part_index = part.parent_part;
DCHECK_LT(parent_part_index, part_index) << "UndoRefineUntilNumPartsEqual()"
" called with "
"'original_num_parts' too low";
// Update the part contents: actually merge "part" onto its parent.
for (const int element : ElementsInPart(part_index)) {
part_of_[element] = parent_part_index;
}
Part* const parent_part = &part_[parent_part_index];
DCHECK_EQ(part.start_index, parent_part->end_index);
parent_part->end_index = part.end_index;
parent_part->fprint ^= part.fprint;
part_.pop_back();
}
}
std::string DynamicPartition::DebugString(DebugStringSorting sorting) const {
if (sorting != SORT_LEXICOGRAPHICALLY && sorting != SORT_BY_PART) {
return absl::StrFormat("Unsupported sorting: %d", sorting);
}
std::vector<std::vector<int>> parts;
for (int i = 0; i < NumParts(); ++i) {
IterablePart iterable_part = ElementsInPart(i);
parts.emplace_back(iterable_part.begin(), iterable_part.end());
std::sort(parts.back().begin(), parts.back().end());
}
if (sorting == SORT_LEXICOGRAPHICALLY) {
std::sort(parts.begin(), parts.end());
}
std::string out;
for (const std::vector<int>& part : parts) {
if (!out.empty()) out += " | ";
out += absl::StrJoin(part, " ");
}
return out;
}
void MergingPartition::Reset(int num_nodes) {
DCHECK_GE(num_nodes, 0);
part_size_.assign(num_nodes, 1);
parent_.assign(num_nodes, -1);
for (int i = 0; i < num_nodes; ++i) parent_[i] = i;
tmp_part_bit_.assign(num_nodes, false);
}
int MergingPartition::MergePartsOf(int node1, int node2) {
DCHECK_GE(node1, 0);
DCHECK_GE(node2, 0);
DCHECK_LT(node1, NumNodes());
DCHECK_LT(node2, NumNodes());
int root1 = GetRoot(node1);
int root2 = GetRoot(node2);
if (root1 == root2) return -1;
int s1 = part_size_[root1];
int s2 = part_size_[root2];
// Attach the smaller part to the larger one. Break ties by root index.
if (s1 < s2 || (s1 == s2 && root1 > root2)) {
std::swap(root1, root2);
std::swap(s1, s2);
}
// Update the part size. Don't change part_size_[root2]: it won't be used
// again by further merges.
part_size_[root1] += part_size_[root2];
SetParentAlongPathToRoot(node1, root1);
SetParentAlongPathToRoot(node2, root1);
return root2;
}
int MergingPartition::GetRootAndCompressPath(int node) {
DCHECK_GE(node, 0);
DCHECK_LT(node, NumNodes());
const int root = GetRoot(node);
SetParentAlongPathToRoot(node, root);
return root;
}
void MergingPartition::KeepOnlyOneNodePerPart(std::vector<int>* nodes) {
int num_nodes_kept = 0;
for (const int node : *nodes) {
const int representative = GetRootAndCompressPath(node);
if (!tmp_part_bit_[representative]) {
tmp_part_bit_[representative] = true;
(*nodes)[num_nodes_kept++] = node;
}
}
nodes->resize(num_nodes_kept);
// Clean up the tmp_part_bit_ vector. Since we've already compressed the
// paths (if backtracking was enabled), no need to do it again.
for (const int node : *nodes) tmp_part_bit_[GetRoot(node)] = false;
}
int MergingPartition::FillEquivalenceClasses(
std::vector<int>* node_equivalence_classes) {
node_equivalence_classes->assign(NumNodes(), -1);
int num_roots = 0;
for (int node = 0; node < NumNodes(); ++node) {
const int root = GetRootAndCompressPath(node);
if ((*node_equivalence_classes)[root] < 0) {
(*node_equivalence_classes)[root] = num_roots;
++num_roots;
}
(*node_equivalence_classes)[node] = (*node_equivalence_classes)[root];
}
return num_roots;
}
std::string MergingPartition::DebugString() {
std::vector<std::vector<int>> sorted_parts(NumNodes());
for (int i = 0; i < NumNodes(); ++i) {
sorted_parts[GetRootAndCompressPath(i)].push_back(i);
}
for (std::vector<int>& part : sorted_parts)
std::sort(part.begin(), part.end());
std::sort(sorted_parts.begin(), sorted_parts.end());
// Note: typically, a lot of elements of "sorted_parts" will be empty,
// but these won't be visible in the string that we construct below.
std::string out;
for (const std::vector<int>& part : sorted_parts) {
if (!out.empty()) out += " | ";
out += absl::StrJoin(part, " ");
}
return out;
}
void SimpleDynamicPartition::Refine(
absl::Span<const int> distinguished_subset) {
// Compute the size of the non-empty intersection of each part with the
// distinguished_subset.
temp_to_clean_.clear();
std::vector<int>& local_sizes = temp_data_by_part_;
local_sizes.resize(size_of_part_.size(), 0);
for (const int element : distinguished_subset) {
const int part = part_of_[element];
if (local_sizes[part] == 0) temp_to_clean_.push_back(part);
local_sizes[part]++;
}
// Reuse local_sizes to store new_part index or zero (no remapping).
// Also update the size of each part.
for (const int part : temp_to_clean_) {
if (local_sizes[part] == size_of_part_[part]) {
// No need to remap if the whole part is in distinguished_subset.
local_sizes[part] = 0;
continue;
}
const int new_part_index = size_of_part_.size();
size_of_part_[part] -= local_sizes[part];
size_of_part_.push_back(local_sizes[part]);
local_sizes[part] = new_part_index;
}
// For each part not completely included or excluded, split out the element
// from distinguished_subset into a new part.
for (const int element : distinguished_subset) {
const int new_part = local_sizes[part_of_[element]];
if (new_part != 0) part_of_[element] = new_part;
}
// Sparse clean.
for (const int part : temp_to_clean_) {
local_sizes[part] = 0;
}
}
std::vector<absl::Span<const int>> SimpleDynamicPartition::GetParts(
std::vector<int>* buffer) {
const int num_elements = part_of_.size();
const int num_parts = size_of_part_.size();
buffer->resize(num_elements);
std::vector<absl::Span<const int>> result(num_parts);
if (result.empty()) return result;
// Compute start of each part in buffer.
std::vector<int>& starts = temp_data_by_part_;
starts.resize(num_parts, 0);
for (int i = 1; i < num_parts; ++i) {
starts[i] = starts[i - 1] + size_of_part_[i - 1];
}
// Fill result.
for (int i = 0; i < num_parts; ++i) {
result[i] = absl::MakeSpan(&(*buffer)[starts[i]], size_of_part_[i]);
}
// Copy elements in order and at their place.
for (int element = 0; element < num_elements; ++element) {
(*buffer)[starts[part_of_[element]]++] = element;
}
starts.clear();
return result;
}
} // namespace operations_research