forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dynamic_partition.h
379 lines (320 loc) · 14.4 KB
/
dynamic_partition.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// TODO(user): refine this toplevel comment when this file settles.
//
// Two dynamic partition classes: one that incrementally splits a partition
// into more and more parts; one that incrementally merges a partition into less
// and less parts.
//
// GLOSSARY:
// The partition classes maintain a partition of N integers 0..N-1
// (aka "elements") into disjoint equivalence classes (aka "parts").
//
// SAFETY:
// Like vector<int> crashes when used improperly, these classes are not "safe":
// most of their methods may crash if called with invalid arguments. The client
// code is responsible for using this class properly. A few DCHECKs() will help
// catch bugs, though.
#ifndef OR_TOOLS_ALGORITHMS_DYNAMIC_PARTITION_H_
#define OR_TOOLS_ALGORITHMS_DYNAMIC_PARTITION_H_
#include <cstdint>
#include <string>
#include <vector>
#include "absl/types/span.h"
#include "ortools/base/logging.h"
namespace operations_research {
// Partition class that supports incremental splitting, with backtracking.
// See http://en.wikipedia.org/wiki/Partition_refinement .
// More precisely, the supported edit operations are:
// - Refine the partition so that a subset S (typically, |S| <<< N)
// of elements are all considered non-equivalent to any element in ¬S.
// Typically, this should be done in O(|S|).
// - Undo the above operations (backtracking).
//
// TODO(user): rename this to BacktrackableSplittingPartition.
class DynamicPartition {
public:
// Creates a DynamicPartition on n elements, numbered 0..n-1. Start with
// the trivial partition (only one subset containing all elements).
explicit DynamicPartition(int num_elements);
// Ditto, but specify the initial part of each elements. Part indices must
// form a dense integer set starting at 0; eg. [2, 1, 0, 1, 1, 3, 0] is valid.
explicit DynamicPartition(const std::vector<int>& initial_part_of_element);
// Accessors.
int NumElements() const { return element_.size(); }
const int NumParts() const { return part_.size(); }
// To iterate over the elements in part #i:
// for (int element : partition.ElementsInPart(i)) { ... }
//
// ORDERING OF ELEMENTS INSIDE PARTS: the order of elements within a given
// part is volatile, and may change with Refine() or UndoRefine*() operations,
// even if the part itself doesn't change.
struct IterablePart;
IterablePart ElementsInPart(int i) const;
int PartOf(int element) const;
int SizeOfPart(int part) const;
int ParentOfPart(int part) const;
// A handy shortcut to ElementsInPart(PartOf(e)). The returned IterablePart
// will never be empty, since it contains at least i.
IterablePart ElementsInSamePartAs(int i) const;
// Returns a fingerprint of the given part. While collisions are possible,
// their probability is quite low. Two parts that have the same size and the
// same fingerprint are most likely identical.
// Also, two parts that have the exact same set of elements will *always*
// have the same fingerprint.
uint64_t FprintOfPart(int part) const;
// Refines the partition such that elements that are in distinguished_subset
// never share the same part as elements that aren't in that subset.
// This might be a no-op: in that case, NumParts() won't change, but the
// order of elements inside each part may change.
//
// ORDERING OF PARTS:
// For each i such that Part #i has a non-trivial intersection with
// "distinguished_subset" (neither empty, nor the full Part); Part #i is
// stripped out of all elements that are in "distinguished_subset", and
// those elements are sent to a newly created part, whose parent_part = i.
// The parts newly created by a single Refine() operations are sorted
// by parent_part.
// Example: a Refine() on a partition with 6 parts causes parts #1, #3 and
// #4 to be split: the partition will now contain 3 new parts: part #6 (with
// parent_part = 1), part #7 (with parent_part = 3) and part #8 (with
// parent_part = 4).
//
// TODO(user): the graph symmetry finder could probably benefit a lot from
// keeping track of one additional bit of information for each part that
// remains unchanged by a Refine() operation: was that part entirely *in*
// the distinguished subset or entirely *out*?
void Refine(const std::vector<int>& distinguished_subset);
// Undo one or several Refine() operations, until the number of parts
// becomes equal to "original_num_parts".
// Prerequisite: NumParts() >= original_num_parts.
void UndoRefineUntilNumPartsEqual(int original_num_parts);
// Dump the partition to a string. There might be different conventions for
// sorting the parts and the elements inside them.
enum DebugStringSorting {
// Elements are sorted within parts, and parts are then sorted
// lexicographically.
SORT_LEXICOGRAPHICALLY,
// Elements are sorted within parts, and parts are kept in order.
SORT_BY_PART,
};
std::string DebugString(DebugStringSorting sorting) const;
// ADVANCED USAGE:
// All elements (0..n-1) of the partition, sorted in a way that's compatible
// with the hierarchical partitioning:
// - All the elements of any given part are contiguous.
// - Elements of a part P are always after elements of part Parent(P).
// - The order remains identical (and the above property holds) after any
// UndoRefine*() operation.
// Note that the order does get changed by Refine() operations.
// This is a reference, so it'll only remain valid and constant until the
// class is destroyed or until Refine() get called.
const std::vector<int>& ElementsInHierarchicalOrder() const {
return element_;
}
private:
// A DynamicPartition instance maintains a list of all of its elements,
// 'sorted' by partitions: elements of the same subset are contiguous
// in that list.
std::vector<int> element_;
// The reverse of elements_[]: element_[index_of_[i]] = i.
std::vector<int> index_of_;
// part_of_[i] is the index of the part that contains element i.
std::vector<int> part_of_;
struct Part {
// This part holds elements[start_index .. end_index-1].
// INVARIANT: end_index > start_index.
int start_index; // Inclusive
int end_index; // Exclusive
// The Part that this part was split out of. See the comment at Refine().
// INVARIANT: part[i].parent_part <= i, and the equality holds iff part[i]
// has no parent.
int parent_part; // Index into the part[] array.
// The part's fingerprint is the XOR of all fingerprints of its elements.
// See FprintOfInt32() in the .cc.
uint64_t fprint;
Part() : start_index(0), end_index(0), parent_part(0), fprint(0) {}
Part(int start_index, int end_index, int parent_part, uint64_t fprint)
: start_index(start_index),
end_index(end_index),
parent_part(parent_part),
fprint(fprint) {}
};
std::vector<Part> part_; // The disjoint parts.
// Used temporarily and exclusively by Refine(). This prevents Refine()
// from being thread-safe.
// INVARIANT: tmp_counter_of_part_ contains only 0s before and after Refine().
std::vector<int> tmp_counter_of_part_;
std::vector<int> tmp_affected_parts_;
};
struct DynamicPartition::IterablePart {
std::vector<int>::const_iterator begin() const { return begin_; }
std::vector<int>::const_iterator end() const { return end_; }
std::vector<int>::const_iterator begin_;
std::vector<int>::const_iterator end_;
int size() const { return end_ - begin_; }
IterablePart() {}
IterablePart(const std::vector<int>::const_iterator& b,
const std::vector<int>::const_iterator& e)
: begin_(b), end_(e) {}
// These typedefs allow this iterator to be used within testing::ElementsAre.
typedef int value_type;
typedef std::vector<int>::const_iterator const_iterator;
};
// Partition class that supports incremental merging, using the union-find
// algorithm (see http://en.wikipedia.org/wiki/Disjoint-set_data_structure).
class MergingPartition {
public:
// At first, all nodes are in their own singleton part.
MergingPartition() { Reset(0); }
explicit MergingPartition(int num_nodes) { Reset(num_nodes); }
void Reset(int num_nodes);
int NumNodes() const { return parent_.size(); }
// Complexity: amortized O(Ackermann⁻¹(N)) -- which is essentially O(1) --
// where N is the number of nodes.
//
// Return value: If this merge caused a representative node (of either node1
// or node2) to stop being a representative (because only one can remain);
// this method returns that removed representative. Otherwise it returns -1.
//
// Details: a smaller part will always be merged onto a larger one.
// Upons ties, the smaller representative becomes the overall representative.
int MergePartsOf(int node1, int node2); // The 'union' of the union-find.
// Get the representative of "node" (a node in the same equivalence class,
// which will also be returned for any other "node" in the same class).
// The complexity if the same as MergePartsOf().
int GetRootAndCompressPath(int node);
// Specialized reader API: prunes "nodes" to only keep at most one node per
// part: any node which is in the same part as an earlier node will be pruned.
void KeepOnlyOneNodePerPart(std::vector<int>* nodes);
// Output the whole partition as node equivalence classes: if there are K
// parts and N nodes, node_equivalence_classes[i] will contain the part index
// (a number in 0..K-1) of node #i. Parts will be sorted by their first node
// (i.e. node 0 will always be in part 0; then the next node that isn't in
// part 0 will be in part 1, and so on).
// Returns the number K of classes.
int FillEquivalenceClasses(std::vector<int>* node_equivalence_classes);
// Dump all components, with nodes sorted within each part and parts
// sorted lexicographically. Eg. "0 1 3 4 | 2 5 | 6 7 8".
std::string DebugString();
// Advanced usage: sets 'node' to be in its original singleton. All nodes
// who may point to 'node' as a parent will remain in an inconsistent state.
// This can be used to reinitialize a MergingPartition that has been sparsely
// modified in O(|modifications|).
// CRASHES IF USED INCORRECTLY.
void ResetNode(int node);
int NumNodesInSamePartAs(int node) {
return part_size_[GetRootAndCompressPath(node)];
}
// FOR DEBUGGING OR SPECIAL "CONST" ACCESS ONLY:
// Find the root of the union-find tree with leaf 'node', i.e. its
// representative node, but don't use path compression.
// The amortized complexity can be as bad as log(N), as opposed to the
// version using path compression.
int GetRoot(int node) const;
private:
// Along the upwards path from 'node' to its root, set the parent of all
// nodes (including the root) to 'parent'.
void SetParentAlongPathToRoot(int node, int parent);
std::vector<int> parent_;
std::vector<int> part_size_;
// Used transiently by KeepOnlyOneNodePerPart().
std::vector<bool> tmp_part_bit_;
};
// A subset of the API of DynamicPartition without backtrack support. The
// Refine() here is about twice as fast, but we have limited query support until
// a batch ComputeElementsByPart() is called.
class SimpleDynamicPartition {
public:
explicit SimpleDynamicPartition(int num_elements)
: part_of_(num_elements, 0),
size_of_part_(num_elements > 0 ? 1 : 0, num_elements) {}
int NumElements() const { return part_of_.size(); }
const int NumParts() const { return size_of_part_.size(); }
int PartOf(int element) const { return part_of_[element]; }
int SizeOfPart(int part) const { return size_of_part_[part]; }
void Refine(absl::Span<const int> distinguished_subset);
// This is meant to be called once after a bunch of Refine().
// The returned Span<> points into the given buffer which is re-initialized.
std::vector<absl::Span<const int>> GetParts(std::vector<int>* buffer);
private:
std::vector<int> part_of_;
std::vector<int> size_of_part_;
// Temp data. Always empty or all zero.
std::vector<int> temp_to_clean_;
std::vector<int> temp_data_by_part_;
};
// *** Implementation of inline methods of the above classes. ***
inline DynamicPartition::IterablePart DynamicPartition::ElementsInPart(
int i) const {
DCHECK_GE(i, 0);
DCHECK_LT(i, NumParts());
return IterablePart(element_.begin() + part_[i].start_index,
element_.begin() + part_[i].end_index);
}
inline int DynamicPartition::PartOf(int element) const {
DCHECK_GE(element, 0);
DCHECK_LT(element, part_of_.size());
return part_of_[element];
}
inline int DynamicPartition::SizeOfPart(int part) const {
DCHECK_GE(part, 0);
DCHECK_LT(part, part_.size());
const Part& p = part_[part];
return p.end_index - p.start_index;
}
inline int DynamicPartition::ParentOfPart(int part) const {
DCHECK_GE(part, 0);
DCHECK_LT(part, part_.size());
return part_[part].parent_part;
}
inline DynamicPartition::IterablePart DynamicPartition::ElementsInSamePartAs(
int i) const {
return ElementsInPart(PartOf(i));
}
inline uint64_t DynamicPartition::FprintOfPart(int part) const {
DCHECK_GE(part, 0);
DCHECK_LT(part, part_.size());
return part_[part].fprint;
}
inline int MergingPartition::GetRoot(int node) const {
DCHECK_GE(node, 0);
DCHECK_LT(node, NumNodes());
int child = node;
while (true) {
const int parent = parent_[child];
if (parent == child) return child;
child = parent;
}
}
inline void MergingPartition::SetParentAlongPathToRoot(int node, int parent) {
DCHECK_GE(node, 0);
DCHECK_LT(node, NumNodes());
DCHECK_GE(parent, 0);
DCHECK_LT(parent, NumNodes());
int child = node;
while (true) {
const int old_parent = parent_[child];
parent_[child] = parent;
if (old_parent == child) return;
child = old_parent;
}
}
inline void MergingPartition::ResetNode(int node) {
DCHECK_GE(node, 0);
DCHECK_LT(node, NumNodes());
parent_[node] = node;
part_size_[node] = 1;
}
} // namespace operations_research
#endif // OR_TOOLS_ALGORITHMS_DYNAMIC_PARTITION_H_