forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
find_graph_symmetries.cc
1123 lines (1060 loc) · 49.7 KB
/
find_graph_symmetries.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/algorithms/find_graph_symmetries.h"
#include <algorithm>
#include <cstdint>
#include <limits>
#include <memory>
#include <numeric>
#include <string>
#include <utility>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/container/flat_hash_set.h"
#include "absl/memory/memory.h"
#include "absl/status/status.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "ortools/algorithms/dense_doubly_linked_list.h"
#include "ortools/algorithms/dynamic_partition.h"
#include "ortools/algorithms/dynamic_permutation.h"
#include "ortools/algorithms/sparse_permutation.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/graph/iterators.h"
#include "ortools/graph/util.h"
ABSL_FLAG(bool, minimize_permutation_support_size, false,
"Tweak the algorithm to try and minimize the support size"
" of the generators produced. This may negatively impact the"
" performance, but works great on the sat_holeXXX benchmarks"
" to reduce the support size.");
namespace operations_research {
using util::GraphIsSymmetric;
std::vector<int> CountTriangles(const ::util::StaticGraph<int, int>& graph,
int max_degree) {
std::vector<int> num_triangles(graph.num_nodes(), 0);
absl::flat_hash_set<std::pair<int, int>> arcs;
arcs.reserve(graph.num_arcs());
for (int a = 0; a < graph.num_arcs(); ++a) {
arcs.insert({graph.Tail(a), graph.Head(a)});
}
for (int node = 0; node < graph.num_nodes(); ++node) {
if (graph.OutDegree(node) > max_degree) continue;
int triangles = 0;
for (int neigh1 : graph[node]) {
for (int neigh2 : graph[node]) {
if (arcs.contains({neigh1, neigh2})) ++triangles;
}
}
num_triangles[node] = triangles;
}
return num_triangles;
}
void LocalBfs(const ::util::StaticGraph<int, int>& graph, int source,
int stop_after_num_nodes, std::vector<int>* visited,
std::vector<int>* num_within_radius,
// For performance, the user provides us with an already-
// allocated bitmask of size graph.num_nodes() with all values set
// to "false", which we'll restore in the same state upon return.
std::vector<bool>* tmp_mask) {
const int n = graph.num_nodes();
visited->clear();
num_within_radius->clear();
num_within_radius->push_back(1);
DCHECK_EQ(tmp_mask->size(), n);
DCHECK(absl::c_find(*tmp_mask, true) == tmp_mask->end());
visited->push_back(source);
(*tmp_mask)[source] = true;
int num_settled = 0;
int next_distance_change = 1;
while (num_settled < visited->size()) {
const int from = (*visited)[num_settled++];
for (const int child : graph[from]) {
if ((*tmp_mask)[child]) continue;
(*tmp_mask)[child] = true;
visited->push_back(child);
}
if (num_settled == next_distance_change) {
// We already know all the nodes at the next distance.
num_within_radius->push_back(visited->size());
if (num_settled >= stop_after_num_nodes) break;
next_distance_change = visited->size();
}
}
// Clean up 'tmp_mask' sparsely.
for (const int node : *visited) (*tmp_mask)[node] = false;
// If we explored the whole connected component, num_within_radius contains
// a spurious entry: remove it.
if (num_settled == visited->size()) {
DCHECK_GE(num_within_radius->size(), 2);
DCHECK_EQ(num_within_radius->back(),
(*num_within_radius)[num_within_radius->size() - 2]);
num_within_radius->pop_back();
}
}
namespace {
// Some routines used below.
void SwapFrontAndBack(std::vector<int>* v) {
DCHECK(!v->empty());
std::swap((*v)[0], v->back());
}
bool PartitionsAreCompatibleAfterPartIndex(const DynamicPartition& p1,
const DynamicPartition& p2,
int part_index) {
const int num_parts = p1.NumParts();
if (p2.NumParts() != num_parts) return false;
for (int p = part_index; p < num_parts; ++p) {
if (p1.SizeOfPart(p) != p2.SizeOfPart(p) ||
p1.ParentOfPart(p) != p2.ParentOfPart(p)) {
return false;
}
}
return true;
}
// Whether the "l1" list maps to "l2" under the permutation "permutation".
// This method uses a transient bitmask on all the elements, which
// should be entirely false before the call (and will be restored as such
// after it).
//
// TODO(user): Make this method support multi-elements (i.e. an element may
// be repeated in the list), and see if that's sufficient to make the whole
// graph symmetry finder support multi-arcs.
template <class List>
bool ListMapsToList(const List& l1, const List& l2,
const DynamicPermutation& permutation,
std::vector<bool>* tmp_node_mask) {
int num_elements_delta = 0;
bool match = true;
for (const int mapped_x : l2) {
++num_elements_delta;
(*tmp_node_mask)[mapped_x] = true;
}
for (const int x : l1) {
--num_elements_delta;
const int mapped_x = permutation.ImageOf(x);
if (!(*tmp_node_mask)[mapped_x]) {
match = false;
break;
}
(*tmp_node_mask)[mapped_x] = false;
}
if (num_elements_delta != 0) match = false;
if (!match) {
// We need to clean up tmp_node_mask.
for (const int x : l2) (*tmp_node_mask)[x] = false;
}
return match;
}
} // namespace
GraphSymmetryFinder::GraphSymmetryFinder(const Graph& graph, bool is_undirected)
: graph_(graph),
tmp_dynamic_permutation_(NumNodes()),
tmp_node_mask_(NumNodes(), false),
tmp_degree_(NumNodes(), 0),
tmp_nodes_with_degree_(NumNodes() + 1) {
// Set up an "unlimited" time limit by default.
time_limit_ = &dummy_time_limit_;
tmp_partition_.Reset(NumNodes());
if (is_undirected) {
DCHECK(GraphIsSymmetric(graph));
} else {
// Compute the reverse adjacency lists.
// First pass: compute the total in-degree of all nodes and put it in
// reverse_adj_list_index (shifted by two; see below why).
reverse_adj_list_index_.assign(graph.num_nodes() + /*shift*/ 2, 0);
for (const int node : graph.AllNodes()) {
for (const int arc : graph.OutgoingArcs(node)) {
++reverse_adj_list_index_[graph.Head(arc) + /*shift*/ 2];
}
}
// Second pass: apply a cumulative sum over reverse_adj_list_index.
// After that, reverse_adj_list contains:
// [0, 0, in_degree(node0), in_degree(node0) + in_degree(node1), ...]
std::partial_sum(reverse_adj_list_index_.begin() + /*shift*/ 2,
reverse_adj_list_index_.end(),
reverse_adj_list_index_.begin() + /*shift*/ 2);
// Third pass: populate "flattened_reverse_adj_lists", using
// reverse_adj_list_index[i] as a dynamic pointer to the yet-unpopulated
// area of the reverse adjacency list of node #i.
flattened_reverse_adj_lists_.assign(graph.num_arcs(), -1);
for (const int node : graph.AllNodes()) {
for (const int arc : graph.OutgoingArcs(node)) {
flattened_reverse_adj_lists_[reverse_adj_list_index_[graph.Head(arc) +
/*shift*/ 1]++] =
node;
}
}
// The last pass shifted reverse_adj_list_index, so it's now as we want it:
// [0, in_degree(node0), in_degree(node0) + in_degree(node1), ...]
if (DEBUG_MODE) {
DCHECK_EQ(graph.num_arcs(), reverse_adj_list_index_[graph.num_nodes()]);
for (const int i : flattened_reverse_adj_lists_) DCHECK_NE(i, -1);
}
}
}
bool GraphSymmetryFinder::IsGraphAutomorphism(
const DynamicPermutation& permutation) const {
for (const int base : permutation.AllMappingsSrc()) {
const int image = permutation.ImageOf(base);
if (image == base) continue;
if (!ListMapsToList(graph_[base], graph_[image], permutation,
&tmp_node_mask_)) {
return false;
}
}
if (!reverse_adj_list_index_.empty()) {
// The graph was not symmetric: we must also check the incoming arcs
// to displaced nodes.
for (const int base : permutation.AllMappingsSrc()) {
const int image = permutation.ImageOf(base);
if (image == base) continue;
if (!ListMapsToList(TailsOfIncomingArcsTo(base),
TailsOfIncomingArcsTo(image), permutation,
&tmp_node_mask_)) {
return false;
}
}
}
return true;
}
namespace {
// Specialized subroutine, to avoid code duplication: see its call site
// and its self-explanatory code.
template <class T>
inline void IncrementCounterForNonSingletons(const T& nodes,
const DynamicPartition& partition,
std::vector<int>* node_count,
std::vector<int>* nodes_seen,
int64_t* num_operations) {
*num_operations += nodes.end() - nodes.begin();
for (const int node : nodes) {
if (partition.ElementsInSamePartAs(node).size() == 1) continue;
const int count = ++(*node_count)[node];
if (count == 1) nodes_seen->push_back(node);
}
}
} // namespace
void GraphSymmetryFinder::RecursivelyRefinePartitionByAdjacency(
int first_unrefined_part_index, DynamicPartition* partition) {
// Rename, for readability of the code below.
std::vector<int>& tmp_nodes_with_nonzero_degree = tmp_stack_;
// This function is the main bottleneck of the whole algorithm. We count the
// number of blocks in the inner-most loops in num_operations. At the end we
// will multiply it by a factor to have some deterministic time that we will
// append to the deterministic time counter.
//
// TODO(user): We are really imprecise in our counting, but it is fine. We
// just need a way to enforce a deterministic limit on the computation effort.
int64_t num_operations = 0;
// Assuming that the partition was refined based on the adjacency on
// parts [0 .. first_unrefined_part_index) already, we simply need to
// refine parts first_unrefined_part_index ... NumParts()-1, the latter bound
// being a moving target:
// When a part #p < first_unrefined_part_index gets modified, it's always
// split in two: itself, and a new part #p'. Since #p was already refined
// on, we only need to further refine on *one* of its two split parts.
// And this will be done because p' > first_unrefined_part_index.
//
// Thus, the following loop really does the full recursive refinement as
// advertised.
std::vector<bool> adjacency_directions(1, /*outgoing*/ true);
if (!reverse_adj_list_index_.empty()) {
adjacency_directions.push_back(false); // Also look at incoming arcs.
}
for (int part_index = first_unrefined_part_index;
part_index < partition->NumParts(); // Moving target!
++part_index) {
for (const bool outgoing_adjacency : adjacency_directions) {
// Count the aggregated degree of all nodes, only looking at arcs that
// come from/to the current part.
if (outgoing_adjacency) {
for (const int node : partition->ElementsInPart(part_index)) {
IncrementCounterForNonSingletons(
graph_[node], *partition, &tmp_degree_,
&tmp_nodes_with_nonzero_degree, &num_operations);
}
} else {
for (const int node : partition->ElementsInPart(part_index)) {
IncrementCounterForNonSingletons(
TailsOfIncomingArcsTo(node), *partition, &tmp_degree_,
&tmp_nodes_with_nonzero_degree, &num_operations);
}
}
// Group the nodes by (nonzero) degree. Remember the maximum degree.
int max_degree = 0;
num_operations += 3 + tmp_nodes_with_nonzero_degree.size();
for (const int node : tmp_nodes_with_nonzero_degree) {
const int degree = tmp_degree_[node];
tmp_degree_[node] = 0; // To clean up after us.
max_degree = std::max(max_degree, degree);
tmp_nodes_with_degree_[degree].push_back(node);
}
tmp_nodes_with_nonzero_degree.clear(); // To clean up after us.
// For each degree, refine the partition by the set of nodes with that
// degree.
for (int degree = 1; degree <= max_degree; ++degree) {
// We use a manually tuned factor 3 because Refine() does quite a bit of
// operations for each node in its argument.
num_operations += 1 + 3 * tmp_nodes_with_degree_[degree].size();
partition->Refine(tmp_nodes_with_degree_[degree]);
tmp_nodes_with_degree_[degree].clear(); // To clean up after us.
}
}
}
// The coefficient was manually tuned (only on a few instances) so that the
// time is roughly correlated with seconds on a fast desktop computer from
// 2020.
time_limit_->AdvanceDeterministicTime(1e-8 *
static_cast<double>(num_operations));
}
void GraphSymmetryFinder::DistinguishNodeInPartition(
int node, DynamicPartition* partition, std::vector<int>* new_singletons) {
const int original_num_parts = partition->NumParts();
partition->Refine(std::vector<int>(1, node));
RecursivelyRefinePartitionByAdjacency(partition->PartOf(node), partition);
// Explore the newly refined parts to gather all the new singletons.
if (new_singletons != nullptr) {
new_singletons->clear();
for (int p = original_num_parts; p < partition->NumParts(); ++p) {
const int parent = partition->ParentOfPart(p);
// We may see the same singleton parent several times, so we guard them
// with the tmp_node_mask_ boolean vector.
if (!tmp_node_mask_[parent] && parent < original_num_parts &&
partition->SizeOfPart(parent) == 1) {
tmp_node_mask_[parent] = true;
new_singletons->push_back(*partition->ElementsInPart(parent).begin());
}
if (partition->SizeOfPart(p) == 1) {
new_singletons->push_back(*partition->ElementsInPart(p).begin());
}
}
// Reset tmp_node_mask_.
for (int p = original_num_parts; p < partition->NumParts(); ++p) {
tmp_node_mask_[partition->ParentOfPart(p)] = false;
}
}
}
namespace {
void MergeNodeEquivalenceClassesAccordingToPermutation(
const SparsePermutation& perm, MergingPartition* node_equivalence_classes,
DenseDoublyLinkedList* sorted_representatives) {
for (int c = 0; c < perm.NumCycles(); ++c) {
// TODO(user): use the global element->image iterator when it exists.
int prev = -1;
for (const int e : perm.Cycle(c)) {
if (prev >= 0) {
const int removed_representative =
node_equivalence_classes->MergePartsOf(prev, e);
if (sorted_representatives != nullptr && removed_representative != -1) {
sorted_representatives->Remove(removed_representative);
}
}
prev = e;
}
}
}
// Subroutine used by FindSymmetries(); see its call site. This finds and
// outputs (in "pruned_other_nodes") the list of all representatives (under
// "node_equivalence_classes") that are in the same part as
// "representative_node" in "partition"; other than "representative_node"
// itself.
// "node_equivalence_classes" must be compatible with "partition", i.e. two
// nodes that are in the same equivalence class must also be in the same part.
//
// To do this in O(output size), we also need the
// "representatives_sorted_by_index_in_partition" data structure: the
// representatives of the nodes of the targeted part are contiguous in that
// linked list.
void GetAllOtherRepresentativesInSamePartAs(
int representative_node, const DynamicPartition& partition,
const DenseDoublyLinkedList& representatives_sorted_by_index_in_partition,
MergingPartition* node_equivalence_classes, // Only for debugging.
std::vector<int>* pruned_other_nodes) {
pruned_other_nodes->clear();
const int part_index = partition.PartOf(representative_node);
// Iterate on all contiguous representatives after the initial one...
int repr = representative_node;
while (true) {
DCHECK_EQ(repr, node_equivalence_classes->GetRoot(repr));
repr = representatives_sorted_by_index_in_partition.Prev(repr);
if (repr < 0 || partition.PartOf(repr) != part_index) break;
pruned_other_nodes->push_back(repr);
}
// ... and then on all contiguous representatives *before* it.
repr = representative_node;
while (true) {
DCHECK_EQ(repr, node_equivalence_classes->GetRoot(repr));
repr = representatives_sorted_by_index_in_partition.Next(repr);
if (repr < 0 || partition.PartOf(repr) != part_index) break;
pruned_other_nodes->push_back(repr);
}
// This code is a bit tricky, so we check that we're doing it right, by
// comparing its output to the brute-force, O(Part size) version.
// This also (partly) verifies that
// "representatives_sorted_by_index_in_partition" is what it claims it is.
if (DEBUG_MODE) {
std::vector<int> expected_output;
for (const int e : partition.ElementsInPart(part_index)) {
if (node_equivalence_classes->GetRoot(e) != representative_node) {
expected_output.push_back(e);
}
}
node_equivalence_classes->KeepOnlyOneNodePerPart(&expected_output);
for (int& x : expected_output) x = node_equivalence_classes->GetRoot(x);
std::sort(expected_output.begin(), expected_output.end());
std::vector<int> sorted_output = *pruned_other_nodes;
std::sort(sorted_output.begin(), sorted_output.end());
DCHECK_EQ(absl::StrJoin(expected_output, " "),
absl::StrJoin(sorted_output, " "));
}
}
} // namespace
absl::Status GraphSymmetryFinder::FindSymmetries(
std::vector<int>* node_equivalence_classes_io,
std::vector<std::unique_ptr<SparsePermutation>>* generators,
std::vector<int>* factorized_automorphism_group_size,
TimeLimit* time_limit) {
// Initialization.
time_limit_ = time_limit == nullptr ? &dummy_time_limit_ : time_limit;
IF_STATS_ENABLED(stats_.initialization_time.StartTimer());
generators->clear();
factorized_automorphism_group_size->clear();
if (node_equivalence_classes_io->size() != NumNodes()) {
return absl::Status(absl::StatusCode::kInvalidArgument,
"Invalid 'node_equivalence_classes_io'.");
}
DynamicPartition base_partition(*node_equivalence_classes_io);
// Break all inherent asymmetries in the graph.
{
ScopedTimeDistributionUpdater u(&stats_.initialization_refine_time);
RecursivelyRefinePartitionByAdjacency(/*first_unrefined_part_index=*/0,
&base_partition);
}
if (time_limit_->LimitReached()) {
return absl::Status(absl::StatusCode::kDeadlineExceeded,
"During the initial refinement.");
}
VLOG(4) << "Base partition: "
<< base_partition.DebugString(DynamicPartition::SORT_BY_PART);
MergingPartition node_equivalence_classes(NumNodes());
std::vector<std::vector<int>> permutations_displacing_node(NumNodes());
std::vector<int> potential_root_image_nodes;
IF_STATS_ENABLED(stats_.initialization_time.StopTimerAndAddElapsedTime());
// To find all permutations of the Graph that satisfy the current partition,
// we pick an element v that is not in a singleton part, and we
// split the search in two phases:
// 1) Find (the generators of) all permutations that keep v invariant.
// 2) For each w in PartOf(v) such that w != v:
// find *one* permutation that maps v to w, if it exists.
// if it does exists, add this to the generators.
//
// The part 1) is recursive.
//
// Since we can't really use true recursion because it will be too deep for
// the stack, we implement it iteratively. To do that, we unroll 1):
// the "invariant dive" is a single pass that successively refines the node
// base_partition with elements from non-singleton parts (the 'invariant
// node'), until all parts are singletons.
// We remember which nodes we picked as invariants, and also the successive
// partition sizes as we refine it, to allow us to backtrack.
// Then we'll perform 2) in the reverse order, backtracking the stack from 1)
// as using another dedicated stack for the search (see below).
IF_STATS_ENABLED(stats_.invariant_dive_time.StartTimer());
struct InvariantDiveState {
int invariant_node;
int num_parts_before_refinement;
InvariantDiveState(int node, int num_parts)
: invariant_node(node), num_parts_before_refinement(num_parts) {}
};
std::vector<InvariantDiveState> invariant_dive_stack;
// TODO(user): experiment with, and briefly describe the results of various
// algorithms for picking the invariant node:
// - random selection
// - highest/lowest degree first
// - enumerate by part index; or by part size
// - etc.
for (int invariant_node = 0; invariant_node < NumNodes(); ++invariant_node) {
if (base_partition.ElementsInSamePartAs(invariant_node).size() == 1) {
continue;
}
invariant_dive_stack.push_back(
InvariantDiveState(invariant_node, base_partition.NumParts()));
DistinguishNodeInPartition(invariant_node, &base_partition, nullptr);
VLOG(4) << "Invariant dive: invariant node = " << invariant_node
<< "; partition after: "
<< base_partition.DebugString(DynamicPartition::SORT_BY_PART);
if (time_limit_->LimitReached()) {
return absl::Status(absl::StatusCode::kDeadlineExceeded,
"During the invariant dive.");
}
}
DenseDoublyLinkedList representatives_sorted_by_index_in_partition(
base_partition.ElementsInHierarchicalOrder());
DynamicPartition image_partition = base_partition;
IF_STATS_ENABLED(stats_.invariant_dive_time.StopTimerAndAddElapsedTime());
// Now we've dived to the bottom: we're left with the identity permutation,
// which we don't need as a generator. We move on to phase 2).
IF_STATS_ENABLED(stats_.main_search_time.StartTimer());
while (!invariant_dive_stack.empty()) {
if (time_limit_->LimitReached()) break;
// Backtrack the last step of 1) (the invariant dive).
IF_STATS_ENABLED(stats_.invariant_unroll_time.StartTimer());
const int root_node = invariant_dive_stack.back().invariant_node;
const int base_num_parts =
invariant_dive_stack.back().num_parts_before_refinement;
invariant_dive_stack.pop_back();
base_partition.UndoRefineUntilNumPartsEqual(base_num_parts);
image_partition.UndoRefineUntilNumPartsEqual(base_num_parts);
VLOG(4) << "Backtracking invariant dive: root node = " << root_node
<< "; partition: "
<< base_partition.DebugString(DynamicPartition::SORT_BY_PART);
// Now we'll try to map "root_node" to all image nodes that seem compatible
// and that aren't "root_node" itself.
//
// Doing so, we're able to detect potential bad (or good) matches by
// refining the 'base' partition with "root_node"; and refining the
// 'image' partition (which represents the partition of images nodes,
// i.e. the nodes after applying the currently implicit permutation)
// with that candidate image node: if the two partitions don't match, then
// the candidate image isn't compatible.
// If the partitions do match, we might either find the underlying
// permutation directly, or we might need to further try and map other
// nodes to their image: this is a recursive search with backtracking.
// The potential images of root_node are the nodes in its part. They can be
// pruned by the already computed equivalence classes.
// TODO(user): better elect the representative of each equivalence class
// in order to reduce the permutation support down the line
// TODO(user): Don't build a list; but instead use direct, inline iteration
// on the representatives in the while() loop below, to benefit from the
// incremental merging of the equivalence classes.
DCHECK_EQ(1, node_equivalence_classes.NumNodesInSamePartAs(root_node));
GetAllOtherRepresentativesInSamePartAs(
root_node, base_partition, representatives_sorted_by_index_in_partition,
&node_equivalence_classes, &potential_root_image_nodes);
DCHECK(!potential_root_image_nodes.empty());
IF_STATS_ENABLED(stats_.invariant_unroll_time.StopTimerAndAddElapsedTime());
// Try to map "root_node" to all of its potential images. For each image,
// we only care about finding a single compatible permutation, if it exists.
while (!potential_root_image_nodes.empty()) {
if (time_limit_->LimitReached()) break;
VLOG(4) << "Potential (pruned) images of root node " << root_node
<< " left: [" << absl::StrJoin(potential_root_image_nodes, " ")
<< "].";
const int root_image_node = potential_root_image_nodes.back();
VLOG(4) << "Trying image of root node: " << root_image_node;
std::unique_ptr<SparsePermutation> permutation =
FindOneSuitablePermutation(root_node, root_image_node,
&base_partition, &image_partition,
*generators, permutations_displacing_node);
if (permutation != nullptr) {
ScopedTimeDistributionUpdater u(&stats_.permutation_output_time);
// We found a permutation. We store it in the list of generators, and
// further prune out the remaining 'root' image candidates, taking into
// account the permutation we just found.
MergeNodeEquivalenceClassesAccordingToPermutation(
*permutation, &node_equivalence_classes,
&representatives_sorted_by_index_in_partition);
// HACK(user): to make sure that we keep root_image_node as the
// representant of its part, we temporarily move it to the front
// of the vector, then move it again to the back so that it gets
// deleted by the pop_back() below.
SwapFrontAndBack(&potential_root_image_nodes);
node_equivalence_classes.KeepOnlyOneNodePerPart(
&potential_root_image_nodes);
SwapFrontAndBack(&potential_root_image_nodes);
// Register it onto the permutations_displacing_node vector.
const int permutation_index = static_cast<int>(generators->size());
for (const int node : permutation->Support()) {
permutations_displacing_node[node].push_back(permutation_index);
}
// Move the permutation to the generator list (this also transfers
// ownership).
generators->push_back(std::move(permutation));
}
potential_root_image_nodes.pop_back();
}
// We keep track of the size of the orbit of 'root_node' under the
// current subgroup: this is one of the factors of the total group size.
// TODO(user): better, more complete explanation.
factorized_automorphism_group_size->push_back(
node_equivalence_classes.NumNodesInSamePartAs(root_node));
}
node_equivalence_classes.FillEquivalenceClasses(node_equivalence_classes_io);
IF_STATS_ENABLED(stats_.main_search_time.StopTimerAndAddElapsedTime());
IF_STATS_ENABLED(stats_.SetPrintOrder(StatsGroup::SORT_BY_NAME));
IF_STATS_ENABLED(LOG(INFO) << "Statistics: " << stats_.StatString());
if (time_limit_->LimitReached()) {
return absl::Status(absl::StatusCode::kDeadlineExceeded,
"Some automorphisms were found, but probably not all.");
}
return ::absl::OkStatus();
}
namespace {
// This method can be easily understood in the context of
// ConfirmFullMatchOrFindNextMappingDecision(): see its call sites.
// Knowing that we want to map some element of part #part_index of
// "base_partition" to part #part_index of "image_partition", pick the "best"
// such mapping, for the global search algorithm.
inline void GetBestMapping(const DynamicPartition& base_partition,
const DynamicPartition& image_partition,
int part_index, int* base_node, int* image_node) {
// As of pending CL 66620435, we've loosely tried three variants of
// GetBestMapping():
// 1) Just take the first element of the base part, map it to the first
// element of the image part.
// 2) Just take the first element of the base part, and map it to itself if
// possible, else map it to the first element of the image part
// 3) Scan all elements of the base parts until we find one that can map to
// itself. If there isn't one; we just fall back to the strategy 1).
//
// Variant 2) gives the best results on most benchmarks, in terms of speed,
// but 3) yields much smaller supports for the sat_holeXXX benchmarks, as
// long as it's combined with the other tweak enabled by
// FLAGS_minimize_permutation_support_size.
if (absl::GetFlag(FLAGS_minimize_permutation_support_size)) {
// Variant 3).
for (const int node : base_partition.ElementsInPart(part_index)) {
if (image_partition.PartOf(node) == part_index) {
*image_node = *base_node = node;
return;
}
}
*base_node = *base_partition.ElementsInPart(part_index).begin();
*image_node = *image_partition.ElementsInPart(part_index).begin();
return;
}
// Variant 2).
*base_node = *base_partition.ElementsInPart(part_index).begin();
if (image_partition.PartOf(*base_node) == part_index) {
*image_node = *base_node;
} else {
*image_node = *image_partition.ElementsInPart(part_index).begin();
}
}
} // namespace
// TODO(user): refactor this method and its submethods into a dedicated class
// whose members will be ominously accessed by all the class methods; most
// notably the search state stack. This may improve readability.
std::unique_ptr<SparsePermutation>
GraphSymmetryFinder::FindOneSuitablePermutation(
int root_node, int root_image_node, DynamicPartition* base_partition,
DynamicPartition* image_partition,
const std::vector<std::unique_ptr<SparsePermutation>>&
generators_found_so_far,
const std::vector<std::vector<int>>& permutations_displacing_node) {
// DCHECKs() and statistics.
ScopedTimeDistributionUpdater search_time_updater(&stats_.search_time);
DCHECK_EQ("", tmp_dynamic_permutation_.DebugString());
DCHECK_EQ(base_partition->DebugString(DynamicPartition::SORT_BY_PART),
image_partition->DebugString(DynamicPartition::SORT_BY_PART));
DCHECK(search_states_.empty());
// These will be used during the search. See their usage.
std::vector<int> base_singletons;
std::vector<int> image_singletons;
int next_base_node;
int next_image_node;
int min_potential_mismatching_part_index;
std::vector<int> next_potential_image_nodes;
// Initialize the search: we can already distinguish "root_node" in the base
// partition. See the comment below.
search_states_.emplace_back(
/*base_node=*/root_node, /*first_image_node=*/-1,
/*num_parts_before_trying_to_map_base_node=*/base_partition->NumParts(),
/*min_potential_mismatching_part_index=*/base_partition->NumParts());
// We inject the image node directly as the "remaining_pruned_image_nodes".
search_states_.back().remaining_pruned_image_nodes.assign(1, root_image_node);
{
ScopedTimeDistributionUpdater u(&stats_.initial_search_refine_time);
DistinguishNodeInPartition(root_node, base_partition, &base_singletons);
}
while (!search_states_.empty()) {
if (time_limit_->LimitReached()) return nullptr;
// When exploring a SearchState "ss", we're supposed to have:
// - A base_partition that has already been refined on ss->base_node.
// (base_singleton is the list of singletons created on the base
// partition during that refinement).
// - A non-empty list of potential image nodes (we'll try them in reverse
// order).
// - An image partition that hasn't been refined yet.
//
// Also, one should note that the base partition (before its refinement on
// base_node) was deemed compatible with the image partition as it is now.
const SearchState& ss = search_states_.back();
const int image_node = ss.first_image_node >= 0
? ss.first_image_node
: ss.remaining_pruned_image_nodes.back();
// Statistics, DCHECKs.
IF_STATS_ENABLED(stats_.search_depth.Add(search_states_.size()));
DCHECK_EQ(ss.num_parts_before_trying_to_map_base_node,
image_partition->NumParts());
// Apply the decision: map base_node to image_node. Since base_partition
// was already refined on base_node, we just need to refine image_partition.
{
ScopedTimeDistributionUpdater u(&stats_.search_refine_time);
DistinguishNodeInPartition(image_node, image_partition,
&image_singletons);
}
VLOG(4) << ss.DebugString();
VLOG(4) << base_partition->DebugString(DynamicPartition::SORT_BY_PART);
VLOG(4) << image_partition->DebugString(DynamicPartition::SORT_BY_PART);
// Run some diagnoses on the two partitions. There are many outcomes, so
// it's a bit complicated:
// 1) The partitions are incompatible
// - Because of a straightfoward criterion (size mismatch).
// - Because they are both fully refined (i.e. singletons only), yet the
// permutation induced by them is not a graph automorpshim.
// 2) The partitions induce a permutation (all their non-singleton parts are
// identical), and this permutation is a graph automorphism.
// 3) The partitions need further refinement:
// - Because some non-singleton parts aren't equal in the base and image
// partition
// - Or because they are a full match (i.e. may induce a permutation,
// like in 2)), but the induced permutation isn't a graph automorphism.
bool compatible = true;
{
ScopedTimeDistributionUpdater u(&stats_.quick_compatibility_time);
compatible = PartitionsAreCompatibleAfterPartIndex(
*base_partition, *image_partition,
ss.num_parts_before_trying_to_map_base_node);
u.AlsoUpdate(compatible ? &stats_.quick_compatibility_success_time
: &stats_.quick_compatibility_fail_time);
}
bool partitions_are_full_match = false;
if (compatible) {
{
ScopedTimeDistributionUpdater u(
&stats_.dynamic_permutation_refinement_time);
tmp_dynamic_permutation_.AddMappings(base_singletons, image_singletons);
}
ScopedTimeDistributionUpdater u(&stats_.map_election_std_time);
min_potential_mismatching_part_index =
ss.min_potential_mismatching_part_index;
partitions_are_full_match = ConfirmFullMatchOrFindNextMappingDecision(
*base_partition, *image_partition, tmp_dynamic_permutation_,
&min_potential_mismatching_part_index, &next_base_node,
&next_image_node);
u.AlsoUpdate(partitions_are_full_match
? &stats_.map_election_std_full_match_time
: &stats_.map_election_std_mapping_time);
}
if (compatible && partitions_are_full_match) {
DCHECK_EQ(min_potential_mismatching_part_index,
base_partition->NumParts());
// We have a permutation candidate!
// Note(user): we also deal with (extremely rare) false positives for
// "partitions_are_full_match" here: in case they aren't a full match,
// IsGraphAutomorphism() will catch that; and we'll simply deepen the
// search.
bool is_automorphism = true;
{
ScopedTimeDistributionUpdater u(&stats_.automorphism_test_time);
is_automorphism = IsGraphAutomorphism(tmp_dynamic_permutation_);
u.AlsoUpdate(is_automorphism ? &stats_.automorphism_test_success_time
: &stats_.automorphism_test_fail_time);
}
if (is_automorphism) {
ScopedTimeDistributionUpdater u(&stats_.search_finalize_time);
// We found a valid permutation. We can return it, but first we
// must restore the partitions to their original state.
std::unique_ptr<SparsePermutation> sparse_permutation(
tmp_dynamic_permutation_.CreateSparsePermutation());
VLOG(4) << "Automorphism found: " << sparse_permutation->DebugString();
const int base_num_parts =
search_states_[0].num_parts_before_trying_to_map_base_node;
base_partition->UndoRefineUntilNumPartsEqual(base_num_parts);
image_partition->UndoRefineUntilNumPartsEqual(base_num_parts);
tmp_dynamic_permutation_.Reset();
search_states_.clear();
search_time_updater.AlsoUpdate(&stats_.search_time_success);
return sparse_permutation;
}
// The permutation isn't a valid automorphism. Either the partitions were
// fully refined, and we deem them incompatible, or they weren't, and we
// consider them as 'not a full match'.
VLOG(4) << "Permutation candidate isn't a valid automorphism.";
if (base_partition->NumParts() == NumNodes()) {
// Fully refined: the partitions are incompatible.
compatible = false;
ScopedTimeDistributionUpdater u(&stats_.dynamic_permutation_undo_time);
tmp_dynamic_permutation_.UndoLastMappings(&base_singletons);
} else {
ScopedTimeDistributionUpdater u(&stats_.map_reelection_time);
// TODO(user): try to get the non-singleton part from
// DynamicPermutation in O(1). On some graphs like the symmetry of the
// mip problem lectsched-4-obj.mps.gz, this take the majority of the
// time!
int non_singleton_part = 0;
{
ScopedTimeDistributionUpdater u(&stats_.non_singleton_search_time);
while (base_partition->SizeOfPart(non_singleton_part) == 1) {
++non_singleton_part;
DCHECK_LT(non_singleton_part, base_partition->NumParts());
}
}
time_limit_->AdvanceDeterministicTime(
1e-9 * static_cast<double>(non_singleton_part));
// The partitions are compatible, but we'll deepen the search on some
// non-singleton part. We can pick any base and image node in this case.
GetBestMapping(*base_partition, *image_partition, non_singleton_part,
&next_base_node, &next_image_node);
}
}
// Now we've fully diagnosed our partitions, and have already dealt with
// case 2). We're left to deal with 1) and 3).
//
// Case 1): partitions are incompatible.
if (!compatible) {
ScopedTimeDistributionUpdater u(&stats_.backtracking_time);
// We invalidate the current image node, and prune the remaining image
// nodes. We might be left with no other image nodes, which means that
// we'll backtrack, i.e. pop our current SearchState and invalidate the
// 'current' image node of the upper SearchState (which might lead to us
// backtracking it, and so on).
while (!search_states_.empty()) {
SearchState* const last_ss = &search_states_.back();
image_partition->UndoRefineUntilNumPartsEqual(
last_ss->num_parts_before_trying_to_map_base_node);
if (last_ss->first_image_node >= 0) {
// Find out and prune the remaining potential image nodes: there is
// no permutation that maps base_node -> image_node that is
// compatible with the current partition, so there can't be a
// permutation that maps base_node -> X either, for all X in the orbit
// of 'image_node' under valid permutations compatible with the
// current partition. Ditto for other potential image nodes.
//
// TODO(user): fix this: we should really be collecting all
// permutations displacing any node in "image_part", for the pruning
// to be really exhaustive. We could also consider alternative ways,
// like incrementally maintaining the list of permutations compatible
// with the partition so far.
const int part = image_partition->PartOf(last_ss->first_image_node);
last_ss->remaining_pruned_image_nodes.reserve(
image_partition->SizeOfPart(part));
last_ss->remaining_pruned_image_nodes.push_back(
last_ss->first_image_node);
for (const int e : image_partition->ElementsInPart(part)) {
if (e != last_ss->first_image_node) {
last_ss->remaining_pruned_image_nodes.push_back(e);
}
}
{
ScopedTimeDistributionUpdater u(&stats_.pruning_time);
PruneOrbitsUnderPermutationsCompatibleWithPartition(
*image_partition, generators_found_so_far,
permutations_displacing_node[last_ss->first_image_node],
&last_ss->remaining_pruned_image_nodes);
}
SwapFrontAndBack(&last_ss->remaining_pruned_image_nodes);
DCHECK_EQ(last_ss->remaining_pruned_image_nodes.back(),
last_ss->first_image_node);
last_ss->first_image_node = -1;
}
last_ss->remaining_pruned_image_nodes.pop_back();
if (!last_ss->remaining_pruned_image_nodes.empty()) break;
VLOG(4) << "Backtracking one level up.";
base_partition->UndoRefineUntilNumPartsEqual(
last_ss->num_parts_before_trying_to_map_base_node);
// If this was the root search state (i.e. we fully backtracked and
// will exit the search after that), we don't have mappings to undo.
// We run UndoLastMappings() anyway, because it's a no-op in that case.
tmp_dynamic_permutation_.UndoLastMappings(&base_singletons);
search_states_.pop_back();
}
// Continue the search.
continue;
}
// Case 3): we deepen the search.
// Since the search loop starts from an already-refined base_partition,
// we must do it here.
VLOG(4) << " Deepening the search.";
search_states_.emplace_back(
next_base_node, next_image_node,
/*num_parts_before_trying_to_map_base_node*/ base_partition->NumParts(),
min_potential_mismatching_part_index);
{
ScopedTimeDistributionUpdater u(&stats_.search_refine_time);
DistinguishNodeInPartition(next_base_node, base_partition,
&base_singletons);
}
}
// We exhausted the search; we didn't find any permutation.
search_time_updater.AlsoUpdate(&stats_.search_time_fail);
return nullptr;
}
util::BeginEndWrapper<std::vector<int>::const_iterator>
GraphSymmetryFinder::TailsOfIncomingArcsTo(int node) const {
return util::BeginEndWrapper<std::vector<int>::const_iterator>(
flattened_reverse_adj_lists_.begin() + reverse_adj_list_index_[node],
flattened_reverse_adj_lists_.begin() + reverse_adj_list_index_[node + 1]);
}
void GraphSymmetryFinder::PruneOrbitsUnderPermutationsCompatibleWithPartition(
const DynamicPartition& partition,
const std::vector<std::unique_ptr<SparsePermutation>>& permutations,
const std::vector<int>& permutation_indices, std::vector<int>* nodes) {
VLOG(4) << " Pruning [" << absl::StrJoin(*nodes, ", ") << "]";
// TODO(user): apply a smarter test to decide whether to do the pruning
// or not: we can accurately estimate the cost of pruning (iterate through
// all generators found so far) and its estimated benefit (the cost of
// the search below the state that we're currently in, times the expected
// number of pruned nodes). Sometimes it may be better to skip the
// pruning.
if (nodes->size() <= 1) return;
// Iterate on all targeted permutations. If they are compatible, apply
// them to tmp_partition_ which will contain the incrementally merged
// equivalence classes.
std::vector<int>& tmp_nodes_on_support =
tmp_stack_; // Rename, for readability.
DCHECK(tmp_nodes_on_support.empty());
// TODO(user): investigate further optimizations: maybe it's possible
// to incrementally maintain the set of permutations that is compatible
// with the current partition, instead of recomputing it here?
for (const int p : permutation_indices) {
const SparsePermutation& permutation = *permutations[p];
// First, a quick compatibility check: the permutation's cycles must be
// smaller or equal to the size of the part that they are included in.
bool compatible = true;
for (int c = 0; c < permutation.NumCycles(); ++c) {
const SparsePermutation::Iterator cycle = permutation.Cycle(c);
if (cycle.size() >
partition.SizeOfPart(partition.PartOf(*cycle.begin()))) {
compatible = false;
break;
}
}
if (!compatible) continue;
// Now the full compatibility check: each cycle of the permutation must
// be fully included in an image part.
for (int c = 0; c < permutation.NumCycles(); ++c) {
int part = -1;
for (const int node : permutation.Cycle(c)) {
if (partition.PartOf(node) != part) {
if (part >= 0) {
compatible = false;
break;
}
part = partition.PartOf(node); // Initialization of 'part'.