forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
knapsack_solver.h
679 lines (594 loc) · 27 KB
/
knapsack_solver.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
// Copyright 2010-2022 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_ALGORITHMS_KNAPSACK_SOLVER_H_
#define OR_TOOLS_ALGORITHMS_KNAPSACK_SOLVER_H_
#include <math.h>
#include <memory>
#include <string>
#include <vector>
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
class BaseKnapsackSolver;
/** This library solves knapsack problems.
*
* Problems the library solves include:
* - 0-1 knapsack problems,
* - Multi-dimensional knapsack problems,
*
* Given n items, each with a profit and a weight, given a knapsack of
* capacity c, the goal is to find a subset of items which fits inside c
* and maximizes the total profit.
* The knapsack problem can easily be extended from 1 to d dimensions.
* As an example, this can be useful to constrain the maximum number of
* items inside the knapsack.
* Without loss of generality, profits and weights are assumed to be positive.
*
* From a mathematical point of view, the multi-dimensional knapsack problem
* can be modeled by d linear constraints:
*
* ForEach(j:1..d)(Sum(i:1..n)(weight_ij * item_i) <= c_j
* where item_i is a 0-1 integer variable.
*
* Then the goal is to maximize:
*
* Sum(i:1..n)(profit_i * item_i).
*
* There are several ways to solve knapsack problems. One of the most
* efficient is based on dynamic programming (mainly when weights, profits
* and dimensions are small, and the algorithm runs in pseudo polynomial time).
* Unfortunately, when adding conflict constraints the problem becomes strongly
* NP-hard, i.e. there is no pseudo-polynomial algorithm to solve it.
* That's the reason why the most of the following code is based on branch and
* bound search.
*
* For instance to solve a 2-dimensional knapsack problem with 9 items,
* one just has to feed a profit vector with the 9 profits, a vector of 2
* vectors for weights, and a vector of capacities.
* E.g.:
\b Python:
\code{.py}
profits = [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
weights = [ [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
[ 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
]
capacities = [ 34, 4 ]
solver = pywrapknapsack_solver.KnapsackSolver(
pywrapknapsack_solver.KnapsackSolver
.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
'Multi-dimensional solver')
solver.Init(profits, weights, capacities)
profit = solver.Solve()
\endcode
\b C++:
\code{.cpp}
const std::vector<int64_t> profits = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
const std::vector<std::vector<int64_t>> weights =
{ { 1, 2, 3, 4, 5, 6, 7, 8, 9 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1 } };
const std::vector<int64_t> capacities = { 34, 4 };
KnapsackSolver solver(
KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
"Multi-dimensional solver");
solver.Init(profits, weights, capacities);
const int64_t profit = solver.Solve();
\endcode
\b Java:
\code{.java}
final long[] profits = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
final long[][] weights = { { 1, 2, 3, 4, 5, 6, 7, 8, 9 },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1 } };
final long[] capacities = { 34, 4 };
KnapsackSolver solver = new KnapsackSolver(
KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
"Multi-dimensional solver");
solver.init(profits, weights, capacities);
final long profit = solver.solve();
\endcode
*/
class KnapsackSolver {
public:
/** Enum controlling which underlying algorithm is used.
*
* This enum is passed to the constructor of the KnapsackSolver object.
* It selects which solving method will be used.
*/
enum SolverType {
/** Brute force method.
*
* Limited to 30 items and one dimension, this
* solver uses a brute force algorithm, ie. explores all possible states.
* Experiments show competitive performance for instances with less than
* 15 items. */
KNAPSACK_BRUTE_FORCE_SOLVER = 0,
/** Optimized method for single dimension small problems
*
* Limited to 64 items and one dimension, this
* solver uses a branch & bound algorithm. This solver is about 4 times
* faster than KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER.
*/
KNAPSACK_64ITEMS_SOLVER = 1,
/** Dynamic Programming approach for single dimension problems
*
* Limited to one dimension, this solver is based on a dynamic programming
* algorithm. The time and space complexity is O(capacity *
* number_of_items).
*/
KNAPSACK_DYNAMIC_PROGRAMMING_SOLVER = 2,
#if defined(USE_CBC)
/** CBC Based Solver
*
* This solver can deal with both large number of items and several
* dimensions. This solver is based on Integer Programming solver CBC.
*/
KNAPSACK_MULTIDIMENSION_CBC_MIP_SOLVER = 3,
#endif // USE_CBC
/** Generic Solver.
*
* This solver can deal with both large number of items and several
* dimensions. This solver is based on branch and bound.
*/
KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER = 5,
#if defined(USE_SCIP)
/** SCIP based solver
*
* This solver can deal with both large number of items and several
* dimensions. This solver is based on Integer Programming solver SCIP.
*/
KNAPSACK_MULTIDIMENSION_SCIP_MIP_SOLVER = 6,
#endif // USE_SCIP
/** XPRESS based solver
*
* This solver can deal with both large number of items and several
* dimensions. This solver is based on Integer Programming solver XPRESS.
*/
KNAPSACK_MULTIDIMENSION_XPRESS_MIP_SOLVER = 7,
#if defined(USE_CPLEX)
/** CPLEX based solver
*
* This solver can deal with both large number of items and several
* dimensions. This solver is based on Integer Programming solver CPLEX.
*/
KNAPSACK_MULTIDIMENSION_CPLEX_MIP_SOLVER = 8,
#endif
/** Divide and Conquer approach for single dimension problems
*
* Limited to one dimension, this solver is based on a divide and conquer
* technique and is suitable for larger problems than Dynamic Programming
* Solver. The time complexity is O(capacity * number_of_items) and the
* space complexity is O(capacity + number_of_items).
*/
KNAPSACK_DIVIDE_AND_CONQUER_SOLVER = 9,
};
explicit KnapsackSolver(const std::string& solver_name);
KnapsackSolver(SolverType solver_type, const std::string& solver_name);
virtual ~KnapsackSolver();
/**
* Initializes the solver and enters the problem to be solved.
*/
void Init(const std::vector<int64_t>& profits,
const std::vector<std::vector<int64_t> >& weights,
const std::vector<int64_t>& capacities);
/**
* Solves the problem and returns the profit of the optimal solution.
*/
int64_t Solve();
/**
* Returns true if the item 'item_id' is packed in the optimal knapsack.
*/
bool BestSolutionContains(int item_id) const;
/**
* Returns true if the solution was proven optimal.
*/
bool IsSolutionOptimal() const { return is_solution_optimal_; }
std::string GetName() const;
bool use_reduction() const { return use_reduction_; }
void set_use_reduction(bool use_reduction) { use_reduction_ = use_reduction; }
/** Time limit in seconds.
*
* When a finite time limit is set the solution obtained might not be optimal
* if the limit is reached.
*/
void set_time_limit(double time_limit_seconds) {
time_limit_seconds_ = time_limit_seconds;
time_limit_ = std::make_unique<TimeLimit>(time_limit_seconds_);
}
private:
// Trivial reduction of capacity constraints when the capacity is higher than
// the sum of the weights of the items. Returns the number of reduced items.
int ReduceCapacities(int num_items,
const std::vector<std::vector<int64_t> >& weights,
const std::vector<int64_t>& capacities,
std::vector<std::vector<int64_t> >* reduced_weights,
std::vector<int64_t>* reduced_capacities);
int ReduceProblem(int num_items);
void ComputeAdditionalProfit(const std::vector<int64_t>& profits);
void InitReducedProblem(const std::vector<int64_t>& profits,
const std::vector<std::vector<int64_t> >& weights,
const std::vector<int64_t>& capacities);
std::unique_ptr<BaseKnapsackSolver> solver_;
std::vector<bool> known_value_;
std::vector<bool> best_solution_;
bool is_solution_optimal_ = false;
std::vector<int> mapping_reduced_item_id_;
bool is_problem_solved_;
int64_t additional_profit_;
bool use_reduction_;
double time_limit_seconds_;
std::unique_ptr<TimeLimit> time_limit_;
DISALLOW_COPY_AND_ASSIGN(KnapsackSolver);
};
#if !defined(SWIG)
// The following code defines needed classes for the KnapsackGenericSolver
// class which is the entry point to extend knapsack with new constraints such
// as conflicts between items.
//
// Constraints are enforced using KnapsackPropagator objects, in the current
// code there is one propagator per dimension (KnapsackCapacityPropagator).
// One of those propagators, named primary propagator, is used to guide the
// search, i.e. decides which item should be assigned next.
// Roughly speaking the search algorithm is:
// - While not optimal
// - Select next search node to expand
// - Select next item_i to assign (using primary propagator)
// - Generate a new search node where item_i is in the knapsack
// - Check validity of this new partial solution (using propagators)
// - If valid, add this new search node to the search
// - Generate a new search node where item_i is not in the knapsack
// - Check validity of this new partial solution (using propagators)
// - If valid, add this new search node to the search
//
// TODO(user): Add a new propagator class for conflict constraint.
// TODO(user): Add a new propagator class used as a guide when the problem has
// several dimensions.
// ----- KnapsackAssignment -----
// KnapsackAssignment is a small struct used to pair an item with its
// assignment. It is mainly used for search nodes and updates.
struct KnapsackAssignment {
KnapsackAssignment(int _item_id, bool _is_in)
: item_id(_item_id), is_in(_is_in) {}
int item_id;
bool is_in;
};
// ----- KnapsackItem -----
// KnapsackItem is a small struct to pair an item weight with its
// corresponding profit.
// The aim of the knapsack problem is to pack as many valuable items as
// possible. A straight forward heuristic is to take those with the greatest
// profit-per-unit-weight. This ratio is called efficiency in this
// implementation. So items will be grouped in vectors, and sorted by
// decreasing efficiency.
// Note that profits are duplicated for each dimension. This is done to
// simplify the code, especially the GetEfficiency method and vector sorting.
// As there usually are only few dimensions, the overhead should not be an
// issue.
struct KnapsackItem {
KnapsackItem(int _id, int64_t _weight, int64_t _profit)
: id(_id), weight(_weight), profit(_profit) {}
double GetEfficiency(int64_t profit_max) const {
return (weight > 0)
? static_cast<double>(profit) / static_cast<double>(weight)
: static_cast<double>(profit_max);
}
// The 'id' field is used to retrieve the initial item in order to
// communicate with other propagators and state.
const int id;
const int64_t weight;
const int64_t profit;
};
typedef KnapsackItem* KnapsackItemPtr;
// ----- KnapsackSearchNode -----
// KnapsackSearchNode is a class used to describe a decision in the decision
// search tree.
// The node is defined by a pointer to the parent search node and an
// assignment (see KnapsackAssignment).
// As the current state is not explicitly stored in a search node, one should
// go through the search tree to incrementally build a partial solution from
// a previous search node.
class KnapsackSearchNode {
public:
KnapsackSearchNode(const KnapsackSearchNode* const parent,
const KnapsackAssignment& assignment);
int depth() const { return depth_; }
const KnapsackSearchNode* const parent() const { return parent_; }
const KnapsackAssignment& assignment() const { return assignment_; }
int64_t current_profit() const { return current_profit_; }
void set_current_profit(int64_t profit) { current_profit_ = profit; }
int64_t profit_upper_bound() const { return profit_upper_bound_; }
void set_profit_upper_bound(int64_t profit) { profit_upper_bound_ = profit; }
int next_item_id() const { return next_item_id_; }
void set_next_item_id(int id) { next_item_id_ = id; }
private:
// 'depth' field is used to navigate efficiently through the search tree
// (see KnapsackSearchPath).
int depth_;
const KnapsackSearchNode* const parent_;
KnapsackAssignment assignment_;
// 'current_profit' and 'profit_upper_bound' fields are used to sort search
// nodes using a priority queue. That allows to pop the node with the best
// upper bound, and more importantly to stop the search when optimality is
// proved.
int64_t current_profit_;
int64_t profit_upper_bound_;
// 'next_item_id' field allows to avoid an O(number_of_items) scan to find
// next item to select. This is done for free by the upper bound computation.
int next_item_id_;
DISALLOW_COPY_AND_ASSIGN(KnapsackSearchNode);
};
// ----- KnapsackSearchPath -----
// KnapsackSearchPath is a small class used to represent the path between a
// node to another node in the search tree.
// As the solution state is not stored for each search node, the state should
// be rebuilt at each node. One simple solution is to apply all decisions
// between the node 'to' and the root. This can be computed in
// O(number_of_items).
//
// However, it is possible to achieve better average complexity. Two
// consecutively explored nodes are usually close enough (i.e., much less than
// number_of_items) to benefit from an incremental update from the node
// 'from' to the node 'to'.
//
// The 'via' field is the common parent of 'from' field and 'to' field.
// So the state can be built by reverting all decisions from 'from' to 'via'
// and then applying all decisions from 'via' to 'to'.
class KnapsackSearchPath {
public:
KnapsackSearchPath(const KnapsackSearchNode& from,
const KnapsackSearchNode& to);
void Init();
const KnapsackSearchNode& from() const { return from_; }
const KnapsackSearchNode& via() const { return *via_; }
const KnapsackSearchNode& to() const { return to_; }
const KnapsackSearchNode* MoveUpToDepth(const KnapsackSearchNode& node,
int depth) const;
private:
const KnapsackSearchNode& from_;
const KnapsackSearchNode* via_; // Computed in 'Init'.
const KnapsackSearchNode& to_;
DISALLOW_COPY_AND_ASSIGN(KnapsackSearchPath);
};
// ----- KnapsackState -----
// KnapsackState represents a partial solution to the knapsack problem.
class KnapsackState {
public:
KnapsackState();
// Initializes vectors with number_of_items set to false (i.e. not bound yet).
void Init(int number_of_items);
// Updates the state by applying or reverting a decision.
// Returns false if fails, i.e. trying to apply an inconsistent decision
// to an already assigned item.
bool UpdateState(bool revert, const KnapsackAssignment& assignment);
int GetNumberOfItems() const { return is_bound_.size(); }
bool is_bound(int id) const { return is_bound_.at(id); }
bool is_in(int id) const { return is_in_.at(id); }
private:
// Vectors 'is_bound_' and 'is_in_' contain a boolean value for each item.
// 'is_bound_(item_i)' is false when there is no decision for item_i yet.
// When item_i is bound, 'is_in_(item_i)' represents the presence (true) or
// the absence (false) of item_i in the current solution.
std::vector<bool> is_bound_;
std::vector<bool> is_in_;
DISALLOW_COPY_AND_ASSIGN(KnapsackState);
};
// ----- KnapsackPropagator -----
// KnapsackPropagator is the base class for modeling and propagating a
// constraint given an assignment.
//
// When some work has to be done both by the base and the derived class,
// a protected pure virtual method ending by 'Propagator' is defined.
// For instance, 'Init' creates a vector of items, and then calls
// 'InitPropagator' to let the derived class perform its own initialization.
class KnapsackPropagator {
public:
explicit KnapsackPropagator(const KnapsackState& state);
virtual ~KnapsackPropagator();
// Initializes data structure and then calls InitPropagator.
void Init(const std::vector<int64_t>& profits,
const std::vector<int64_t>& weights);
// Updates data structure and then calls UpdatePropagator.
// Returns false when failure.
bool Update(bool revert, const KnapsackAssignment& assignment);
// ComputeProfitBounds should set 'profit_lower_bound_' and
// 'profit_upper_bound_' which are constraint specific.
virtual void ComputeProfitBounds() = 0;
// Returns the id of next item to assign.
// Returns kNoSelection when all items are bound.
virtual int GetNextItemId() const = 0;
int64_t current_profit() const { return current_profit_; }
int64_t profit_lower_bound() const { return profit_lower_bound_; }
int64_t profit_upper_bound() const { return profit_upper_bound_; }
// Copies the current state into 'solution'.
// All unbound items are set to false (i.e. not in the knapsack).
// When 'has_one_propagator' is true, CopyCurrentSolutionPropagator is called
// to have a better solution. When there is only one propagator
// there is no need to check the solution with other propagators, so the
// partial solution can be smartly completed.
void CopyCurrentStateToSolution(bool has_one_propagator,
std::vector<bool>* solution) const;
protected:
// Initializes data structure. This method is called after initialization
// of KnapsackPropagator data structure.
virtual void InitPropagator() = 0;
// Updates internal data structure incrementally. This method is called
// after update of KnapsackPropagator data structure.
virtual bool UpdatePropagator(bool revert,
const KnapsackAssignment& assignment) = 0;
// Copies the current state into 'solution'.
// Only unbound items have to be copied as CopyCurrentSolution was already
// called with current state.
// This method is useful when a propagator is able to find a better solution
// than the blind instantiation to false of unbound items.
virtual void CopyCurrentStateToSolutionPropagator(
std::vector<bool>* solution) const = 0;
const KnapsackState& state() const { return state_; }
const std::vector<KnapsackItemPtr>& items() const { return items_; }
void set_profit_lower_bound(int64_t profit) { profit_lower_bound_ = profit; }
void set_profit_upper_bound(int64_t profit) { profit_upper_bound_ = profit; }
private:
std::vector<KnapsackItemPtr> items_;
int64_t current_profit_;
int64_t profit_lower_bound_;
int64_t profit_upper_bound_;
const KnapsackState& state_;
DISALLOW_COPY_AND_ASSIGN(KnapsackPropagator);
};
// ----- KnapsackCapacityPropagator -----
// KnapsackCapacityPropagator is a KnapsackPropagator used to enforce
// a capacity constraint.
// As a KnapsackPropagator is supposed to compute profit lower and upper
// bounds, and get the next item to select, it can be seen as a 0-1 Knapsack
// solver. The most efficient way to compute the upper bound is to iterate on
// items in profit-per-unit-weight decreasing order. The break item is
// commonly defined as the first item for which there is not enough remaining
// capacity. Selecting this break item as the next-item-to-assign usually
// gives the best results (see Greenberg & Hegerich).
//
// This is exactly what is implemented in this class.
//
// When there is only one propagator, it is possible to compute a better
// profit lower bound almost for free. During the scan to find the
// break element all unbound items are added just as if they were part of
// the current solution. This is used in both ComputeProfitBounds and
// CopyCurrentSolutionPropagator.
// For incrementality reasons, the ith item should be accessible in O(1). That's
// the reason why the item vector has to be duplicated 'sorted_items_'.
class KnapsackCapacityPropagator : public KnapsackPropagator {
public:
KnapsackCapacityPropagator(const KnapsackState& state, int64_t capacity);
~KnapsackCapacityPropagator() override;
void ComputeProfitBounds() override;
int GetNextItemId() const override { return break_item_id_; }
protected:
// Initializes KnapsackCapacityPropagator (e.g., sort items in decreasing
// order).
void InitPropagator() override;
// Updates internal data structure incrementally (i.e., 'consumed_capacity_')
// to avoid a O(number_of_items) scan.
bool UpdatePropagator(bool revert,
const KnapsackAssignment& assignment) override;
void CopyCurrentStateToSolutionPropagator(
std::vector<bool>* solution) const override;
private:
// An obvious additional profit upper bound corresponds to the linear
// relaxation: remaining_capacity * efficiency of the break item.
// It is possible to do better in O(1), using Martello-Toth bound U2.
// The main idea is to enforce integrality constraint on the break item,
// ie. either the break item is part of the solution, either it is not.
// So basically the linear relaxation is done on the item before the break
// item, or the one after the break item.
// This is what GetAdditionalProfit method implements.
int64_t GetAdditionalProfit(int64_t remaining_capacity,
int break_item_id) const;
const int64_t capacity_;
int64_t consumed_capacity_;
int break_item_id_;
std::vector<KnapsackItemPtr> sorted_items_;
int64_t profit_max_;
DISALLOW_COPY_AND_ASSIGN(KnapsackCapacityPropagator);
};
// ----- BaseKnapsackSolver -----
// This is the base class for knapsack solvers.
class BaseKnapsackSolver {
public:
explicit BaseKnapsackSolver(const std::string& solver_name)
: solver_name_(solver_name) {}
virtual ~BaseKnapsackSolver() {}
// Initializes the solver and enters the problem to be solved.
virtual void Init(const std::vector<int64_t>& profits,
const std::vector<std::vector<int64_t> >& weights,
const std::vector<int64_t>& capacities) = 0;
// Gets the lower and upper bound when the item is in or out of the knapsack.
// To ensure objects are correctly initialized, this method should not be
// called before ::Init.
virtual void GetLowerAndUpperBoundWhenItem(int item_id, bool is_item_in,
int64_t* lower_bound,
int64_t* upper_bound);
// Solves the problem and returns the profit of the optimal solution.
virtual int64_t Solve(TimeLimit* time_limit, bool* is_solution_optimal) = 0;
// Returns true if the item 'item_id' is packed in the optimal knapsack.
virtual bool best_solution(int item_id) const = 0;
virtual std::string GetName() const { return solver_name_; }
private:
const std::string solver_name_;
};
// ----- KnapsackGenericSolver -----
// KnapsackGenericSolver is the multi-dimensional knapsack solver class.
// In the current implementation, the next item to assign is given by the
// primary propagator. Using SetPrimaryPropagator allows changing the default
// (propagator of the first dimension), and selecting another dimension when
// more constrained.
// TODO(user): In the case of a multi-dimensional knapsack problem, implement
// an aggregated propagator to combine all dimensions and give a better guide
// to select the next item (see, for instance, Dobson's aggregated efficiency).
class KnapsackGenericSolver : public BaseKnapsackSolver {
public:
explicit KnapsackGenericSolver(const std::string& solver_name);
~KnapsackGenericSolver() override;
// Initializes the solver and enters the problem to be solved.
void Init(const std::vector<int64_t>& profits,
const std::vector<std::vector<int64_t> >& weights,
const std::vector<int64_t>& capacities) override;
int GetNumberOfItems() const { return state_.GetNumberOfItems(); }
void GetLowerAndUpperBoundWhenItem(int item_id, bool is_item_in,
int64_t* lower_bound,
int64_t* upper_bound) override;
// Sets which propagator should be used to guide the search.
// 'primary_propagator_id' should be in 0..p-1 with p the number of
// propagators.
void set_primary_propagator_id(int primary_propagator_id) {
primary_propagator_id_ = primary_propagator_id;
}
// Solves the problem and returns the profit of the optimal solution.
int64_t Solve(TimeLimit* time_limit, bool* is_solution_optimal) override;
// Returns true if the item 'item_id' is packed in the optimal knapsack.
bool best_solution(int item_id) const override {
return best_solution_.at(item_id);
}
private:
// Clears internal data structure.
void Clear();
// Updates all propagators reverting/applying all decision on the path.
// Returns true if fails. Note that, even if fails, all propagators should
// be updated to be in a stable state in order to stay incremental.
bool UpdatePropagators(const KnapsackSearchPath& path);
// Updates all propagators reverting/applying one decision.
// Return true if fails. Note that, even if fails, all propagators should
// be updated to be in a stable state in order to stay incremental.
bool IncrementalUpdate(bool revert, const KnapsackAssignment& assignment);
// Updates the best solution if the current solution has a better profit.
void UpdateBestSolution();
// Returns true if new relevant search node was added to the nodes array, that
// means this node should be added to the search queue too.
bool MakeNewNode(const KnapsackSearchNode& node, bool is_in);
// Gets the aggregated (min) profit upper bound among all propagators.
int64_t GetAggregatedProfitUpperBound() const;
bool HasOnePropagator() const { return propagators_.size() == 1; }
int64_t GetCurrentProfit() const {
return propagators_.at(primary_propagator_id_)->current_profit();
}
int64_t GetNextItemId() const {
return propagators_.at(primary_propagator_id_)->GetNextItemId();
}
std::vector<KnapsackPropagator*> propagators_;
int primary_propagator_id_;
std::vector<KnapsackSearchNode*> search_nodes_;
KnapsackState state_;
int64_t best_solution_profit_;
std::vector<bool> best_solution_;
DISALLOW_COPY_AND_ASSIGN(KnapsackGenericSolver);
};
#endif // SWIG
} // namespace operations_research
#endif // OR_TOOLS_ALGORITHMS_KNAPSACK_SOLVER_H_